Spaces:
Sleeping
Sleeping
File size: 7,126 Bytes
7e0431e 2af3524 e5a5157 99b23ed 2af3524 99b23ed 7e0431e 99b23ed 8c0ca02 2af3524 8c0ca02 2af3524 99b23ed 7e0431e 8c0ca02 7e0431e 2af3524 99b23ed 7e0431e 8c0ca02 e5a5157 2af3524 e5a5157 7e0431e e5a5157 7e0431e 8c0ca02 2af3524 8c0ca02 2af3524 8c0ca02 2af3524 7e0431e 2af3524 e5a5157 99b23ed 7e0431e e5a5157 2af3524 e5a5157 8628478 e5a5157 7e0431e 8c0ca02 8628478 99b23ed e5a5157 99b23ed e5a5157 99b23ed e5a5157 99b23ed 8c0ca02 99b23ed 7e0431e 8c0ca02 99b23ed e5a5157 8c0ca02 e5a5157 7e0431e 2af3524 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import streamlit as st
from streamlit_mic_recorder import mic_recorder
from transformers import pipeline
import torch
from transformers import BertTokenizer, BertForSequenceClassification
# from transformers import AutoModelForSequenceClassification, AutoTokenizer
import numpy as np
import pandas as pd
import time
import altair as alt
def callback():
if st.session_state.my_recorder_output:
audio_bytes = st.session_state.my_recorder_output['bytes']
st.audio(audio_bytes)
@st.cache_resource
def load_text_to_speech_model(model="openai/whisper-base"):
pipe = pipeline("automatic-speech-recognition", model=model)
return pipe
def translate(inputs, model="openai/whisper-base"):
pipe = pipeline("automatic-speech-recognition", model=model)
translate_result = pipe(inputs, generate_kwargs={'task': 'translate'})
return translate_result['text']
# def encode_depracated(docs, tokenizer):
# '''
# This function takes list of texts and returns input_ids and attention_mask of texts
# '''
# encoded_dict = tokenizer.batch_encode_plus(docs, add_special_tokens=True, max_length=128, padding='max_length',
# return_attention_mask=True, truncation=True, return_tensors='pt')
# input_ids = encoded_dict['input_ids']
# attention_masks = encoded_dict['attention_mask']
# return input_ids, attention_masks
# def load_classification_model():
# CUSTOMMODEL_PATH = "./bert-itserviceclassification"
# PRETRAINED_LM = "bert-base-uncased"
# tokenizer = BertTokenizer.from_pretrained(PRETRAINED_LM, do_lower_case=True)
# model = BertForSequenceClassification.from_pretrained(PRETRAINED_LM,
# num_labels=8,
# output_attentions=False,
# output_hidden_states=False)
# model.load_state_dict(torch.load(CUSTOMMODEL_PATH, map_location ='cpu'))
# return model, tokenizer
@st.cache_resource
def load_classification_model():
PRETRAINED_LM = "kkngan/bert-base-uncased-it-service-classification"
# model = AutoModelForSequenceClassification.from_pretrained(PRETRAINED_LM, num_labels=8)
# tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_LM)
tokenizer = BertTokenizer.from_pretrained(PRETRAINED_LM, do_lower_case=True)
model = BertForSequenceClassification.from_pretrained(PRETRAINED_LM,
num_labels=8)
return model, tokenizer
def predict(text, model, tokenizer):
lookup_key ={0: 'Hardware',
1: 'Access',
2: 'Miscellaneous',
3: 'HR Support',
4: 'Purchase',
5: 'Administrative rights',
6: 'Storage',
7: 'Internal Project'}
# with torch.no_grad():
# input_ids, att_mask = encode([text], tokenizer)
# logits = model(input_ids = input_ids, attention_mask=att_mask).logits
inputs = tokenizer(text,
padding = True,
truncation = True,
return_tensors='pt')
outputs = model(**inputs)
predicted_class_id = outputs.logits.argmax().item()
predicted_label = lookup_key.get(predicted_class_id)
probability = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().detach().numpy()
return predicted_label, predicted_class_id, probability
def display_result(translate_text, prediction, predicted_class_id, probability):
st.markdown('<font color="purple"><b>Text:</b></font>', unsafe_allow_html=True)
st.write(f'{translate_text}')
st.write(f'\n')
st.write(f'\n')
# st.markdown(f'<font color="green"><b>Predicted Class: (Probability: {(probability[0][predicted_class_id] * 100):.2f}%) </b></font>', unsafe_allow_html=True)
st.markdown('<font color="green"><b>Predicted Class:</b></font>', unsafe_allow_html=True)
st.write(f'{prediction}')
# Convert probability to bar cart
st.write(f'\n')
st.write(f'\n')
# Show Probability of each Service Category
category = ('Hardware', 'Access', 'Miscellaneous', 'HR Support', 'Purchase', 'Administrative rights', 'Storage', 'Internal Project')
probability = np.array(probability[0])
df = pd.DataFrame({'Category': category, 'Probability (%)': probability * 100})
df['Probability (%)'] = df['Probability (%)'].apply(lambda x: round(x, 2))
base = alt.Chart(df).encode(
x='Probability (%)',
y=alt.Y('Category').sort('-x'),
# color='b:O',
tooltip=['Category',alt.Tooltip('Probability (%)', format=",.2f")],
text='Probability (%)'
).properties(title="Probability of each Service Category")
chart = base.mark_bar() + base.mark_text(align='left', dx=2)
st.altair_chart(chart, use_container_width=True)
def main():
# st.cache_resource.clear()
st.set_page_config(layout="wide", page_title="NLP IT Service Classification", page_icon="🤖",)
st.markdown('<b>🤖 Welcome to IT Service Classification Assistant!!! 🤖</b>', unsafe_allow_html=True)
st.write(f'\n')
st.write(f'\n')
with st.sidebar:
st.image('front_page_image.jpg' , use_column_width=True)
text_to_speech_model = st.selectbox("Pick select a speech to text model", ["openai/whisper-base", "openai/whisper-large-v3"])
options = st.selectbox("Pick select an input method", ["Start a recording", "Upload an audio", "Enter a transcript"])
if options == "Start a recording":
audio = mic_recorder(key='my_recorder', callback=callback)
elif options == "Upload an audio":
audio = st.file_uploader("Please upload an audio", type=["wav", "mp3"])
else:
text = st.text_area("Please input the transcript (Only support English)")
button = st.button('Submit')
if button:
with st.spinner(text="Loading... It may take a while if you are running the app for the first time."):
start_time = time.time()
if options == "Start a recording":
# transcibe_text, translate_text = transcribe_and_translate(upload=audio["bytes"])
translate_text = translate(inputs=audio["bytes"], model=text_to_speech_model)
elif options == "Upload an audio":
# transcibe_text, translate_text = transcribe_and_translate(upload=audio.getvalue())
translate_text = translate(inputs=audio.getvalue(), model=text_to_speech_model)
else:
translate_text = text
model, tokenizer = load_classification_model()
prediction, predicted_class_id, probability = predict(text=translate_text, model=model, tokenizer=tokenizer)
end_time = time.time()
display_result(translate_text, prediction, predicted_class_id, probability)
st.write(f'\n')
st.write(f'\n')
st.markdown(f'*It took {(end_time-start_time):.2f} sec to process the input.', unsafe_allow_html=True)
if __name__ == '__main__':
main()
|