Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ def callback():
|
|
12 |
st.audio(audio_bytes)
|
13 |
|
14 |
def transcribe_and_translate(upload):
|
15 |
-
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-
|
16 |
transcribe_result = pipe(upload, generate_kwargs={'task': 'transcribe'})
|
17 |
translate_result = pipe(upload, generate_kwargs={'task': 'translate'})
|
18 |
return transcribe_result['text'], translate_result['text']
|
@@ -82,19 +82,19 @@ def main():
|
|
82 |
if options == "Start a recording":
|
83 |
audio = mic_recorder(key='my_recorder', callback=callback)
|
84 |
elif options == "Upload an audio":
|
85 |
-
audio = st.file_uploader("Please upload an audio")
|
86 |
else:
|
87 |
text = st.text_area("Please input the transcript (Only support English)")
|
88 |
button = st.button('Submit')
|
89 |
|
90 |
if button:
|
91 |
-
with st.spinner(text="Loading... It may take
|
92 |
model, tokenizer = load_model()
|
93 |
if options == "Start a recording":
|
94 |
transcibe_text, translate_text = transcribe_and_translate(upload=audio["bytes"])
|
95 |
prediction, probability = predict(text=translate_text, model=model, tokenizer=tokenizer)
|
96 |
elif options == "Upload an audio":
|
97 |
-
transcibe_text, translate_text = transcribe_and_translate(upload=audio.getvalue)
|
98 |
prediction, probability = predict(text=translate_text, model=model, tokenizer=tokenizer)
|
99 |
else:
|
100 |
transcibe_text = text
|
@@ -112,7 +112,7 @@ def main():
|
|
112 |
# Convert probability to bar
|
113 |
st.write(f'\n')
|
114 |
objects = ('Hardware', 'Access', 'Miscellaneous', 'HR Support', 'Purchase', 'Administrative rights', 'Storage', 'Internal Project')
|
115 |
-
df = pd.DataFrame({'Categories': objects, 'Probability': probability[0]})
|
116 |
st.bar_chart(data=df, x='Categories', y='Probability')
|
117 |
|
118 |
if __name__ == '__main__':
|
|
|
12 |
st.audio(audio_bytes)
|
13 |
|
14 |
def transcribe_and_translate(upload):
|
15 |
+
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large")
|
16 |
transcribe_result = pipe(upload, generate_kwargs={'task': 'transcribe'})
|
17 |
translate_result = pipe(upload, generate_kwargs={'task': 'translate'})
|
18 |
return transcribe_result['text'], translate_result['text']
|
|
|
82 |
if options == "Start a recording":
|
83 |
audio = mic_recorder(key='my_recorder', callback=callback)
|
84 |
elif options == "Upload an audio":
|
85 |
+
audio = st.file_uploader("Please upload an audio", type=["wav", "mp3"])
|
86 |
else:
|
87 |
text = st.text_area("Please input the transcript (Only support English)")
|
88 |
button = st.button('Submit')
|
89 |
|
90 |
if button:
|
91 |
+
with st.spinner(text="Loading... It may take a while if you are running the app for the first time."):
|
92 |
model, tokenizer = load_model()
|
93 |
if options == "Start a recording":
|
94 |
transcibe_text, translate_text = transcribe_and_translate(upload=audio["bytes"])
|
95 |
prediction, probability = predict(text=translate_text, model=model, tokenizer=tokenizer)
|
96 |
elif options == "Upload an audio":
|
97 |
+
transcibe_text, translate_text = transcribe_and_translate(upload=audio.getvalue())
|
98 |
prediction, probability = predict(text=translate_text, model=model, tokenizer=tokenizer)
|
99 |
else:
|
100 |
transcibe_text = text
|
|
|
112 |
# Convert probability to bar
|
113 |
st.write(f'\n')
|
114 |
objects = ('Hardware', 'Access', 'Miscellaneous', 'HR Support', 'Purchase', 'Administrative rights', 'Storage', 'Internal Project')
|
115 |
+
df = pd.DataFrame({'Categories': objects, 'Probability': np.around(probability[0])})
|
116 |
st.bar_chart(data=df, x='Categories', y='Probability')
|
117 |
|
118 |
if __name__ == '__main__':
|