YOLO / app.py
kisa-misa's picture
Create app.py
cb670b6
raw
history blame
6.07 kB
from transformers import AutoFeatureExtractor, YolosForObjectDetection
import gradio as gr
from PIL import Image
import torch
import matplotlib.pyplot as plt
import io
import numpy as np
import os
os.system("pip -qq install yoloxdetect==0.0.7")
from yoloxdetect import YoloxDetector
# Images
torch.hub.download_url_to_file('https://tochkanews.ru/wp-content/uploads/2020/09/0.jpg', '1.jpg')
torch.hub.download_url_to_file('https://s.rdrom.ru/1/pubs/4/35893/1906770.jpg', '2.jpg')
torch.hub.download_url_to_file('https://static.mk.ru/upload/entities/2022/04/17/07/articles/detailPicture/5b/39/28/b6/ffb1aa636dd62c30e6ff670f84474f75.jpg', '3.jpg')
def yolox_inference(
image_path: gr.inputs.Image = None,
model_path: gr.inputs.Dropdown = 'kadirnar/yolox_s-v0.1.1',
config_path: gr.inputs.Textbox = 'configs.yolox_s',
image_size: gr.inputs.Slider = 640
):
"""
YOLOX inference function
Args:
image: Input image
model_path: Path to the model
config_path: Path to the config file
image_size: Image size
Returns:
Rendered image
"""
model = YoloxDetector(model_path, config_path=config_path, device="cpu", hf_model=True)
pred = model.predict(image_path=image_path, image_size=image_size)
return pred
inputs = [
gr.inputs.Image(type="filepath", label="Input Image"),
gr.inputs.Dropdown(
label="Model Path",
choices=[
"kadirnar/yolox_s-v0.1.1",
"kadirnar/yolox_m-v0.1.1",
"kadirnar/yolox_tiny-v0.1.1",
],
default="kadirnar/yolox_s-v0.1.1",
),
gr.inputs.Dropdown(
label="Config Path",
choices=[
"configs.yolox_s",
"configs.yolox_m",
"configs.yolox_tiny",
],
default="configs.yolox_s",
),
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
]
outputs = gr.outputs.Image(type="filepath", label="Output Image")
title = "YOLOX is a high-performance anchor-free YOLO."
examples = [
["1.jpg", "kadirnar/yolox_m-v0.1.1", "configs.yolox_m", 640],
["2.jpg", "kadirnar/yolox_s-v0.1.1", "configs.yolox_s", 640],
["3.jpg", "kadirnar/yolox_tiny-v0.1.1", "configs.yolox_tiny", 640],
]
demo_app = gr.Interface(
fn=yolox_inference,
inputs=inputs,
outputs=outputs,
title=title,
examples=examples,
cache_examples=True,
theme='huggingface',
)
demo_app.launch(debug=True, enable_queue=True)
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
def get_class_list_from_input(classes_string: str):
if classes_string == "":
return []
classes_list = classes_string.split(",")
classes_list = [x.strip() for x in classes_list]
return classes_list
def infer(img, model_name: str, prob_threshold: int, classes_to_show = str):
feature_extractor = AutoFeatureExtractor.from_pretrained(f"hustvl/{model_name}")
model = YolosForObjectDetection.from_pretrained(f"hustvl/{model_name}")
img = Image.fromarray(img)
pixel_values = feature_extractor(img, return_tensors="pt").pixel_values
with torch.no_grad():
outputs = model(pixel_values, output_attentions=True)
probas = outputs.logits.softmax(-1)[0, :, :-1]
keep = probas.max(-1).values > prob_threshold
target_sizes = torch.tensor(img.size[::-1]).unsqueeze(0)
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
bboxes_scaled = postprocessed_outputs[0]['boxes']
classes_list = get_class_list_from_input(classes_to_show)
res_img = plot_results(img, probas[keep], bboxes_scaled[keep], model, classes_list)
return res_img
def plot_results(pil_img, prob, boxes, model, classes_list):
plt.figure(figsize=(16,10))
plt.imshow(pil_img)
ax = plt.gca()
colors = COLORS * 100
for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors):
cl = p.argmax()
object_class = model.config.id2label[cl.item()]
if len(classes_list) > 0 :
if object_class not in classes_list:
continue
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
fill=False, color=c, linewidth=3))
text = f'{object_class}: {p[cl]:0.2f}'
ax.text(xmin, ymin, text, fontsize=15,
bbox=dict(facecolor='yellow', alpha=0.5))
plt.axis('off')
return fig2img(plt.gcf())
def fig2img(fig):
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
img = Image.open(buf)
return img
description = """Object Detection with YOLOS. Choose https://github.com/amikelive/coco-labels/blob/master/coco-labels-2014_2017.txtyour model and you're good to go.
You can adapt the minimum probability threshold with the slider.
Additionally you can restrict the classes that will be shown by putting in a comma separated list of
[COCO classes](https://github.com/amikelive/coco-labels/blob/master/coco-labels-2014_2017.txt).
Leaving the field empty will show all classes"""
image_in = gr.components.Image()
image_out = gr.components.Image()
model_choice = gr.components.Dropdown(["yolos-tiny", "yolos-small", "yolos-base", "yolos-small-300", "yolos-small-dwr"], value="yolos-small", label="YOLOS Model")
prob_threshold_slider = gr.components.Slider(minimum=0, maximum=1.0, step=0.01, value=0.9, label="Probability Threshold")
classes_to_show = gr.components.Textbox(placeholder="e.g. person, boat", label="Classes to use (empty means all classes)")
Iface = gr.Interface(
fn=infer,
inputs=[image_in,model_choice, prob_threshold_slider, classes_to_show],
outputs=image_out,
#examples=[["examples/10_People_Marching_People_Marching_2_120.jpg"], ["examples/12_Group_Group_12_Group_Group_12_26.jpg"], ["examples/43_Row_Boat_Canoe_43_247.jpg"]],
title="Object Detection with YOLOS",
description=description,
).launch()