from transformers import AutoFeatureExtractor, YolosForObjectDetection import gradio as gr from PIL import Image import torch import matplotlib.pyplot as plt import io import numpy as np import os os.system("pip -qq install yoloxdetect==0.0.7") from yoloxdetect import YoloxDetector # Images torch.hub.download_url_to_file('https://tochkanews.ru/wp-content/uploads/2020/09/0.jpg', '1.jpg') torch.hub.download_url_to_file('https://s.rdrom.ru/1/pubs/4/35893/1906770.jpg', '2.jpg') torch.hub.download_url_to_file('https://static.mk.ru/upload/entities/2022/04/17/07/articles/detailPicture/5b/39/28/b6/ffb1aa636dd62c30e6ff670f84474f75.jpg', '3.jpg') def yolox_inference( image_path: gr.inputs.Image = None, model_path: gr.inputs.Dropdown = 'kadirnar/yolox_s-v0.1.1', config_path: gr.inputs.Textbox = 'configs.yolox_s', image_size: gr.inputs.Slider = 640 ): """ YOLOX inference function Args: image: Input image model_path: Path to the model config_path: Path to the config file image_size: Image size Returns: Rendered image """ model = YoloxDetector(model_path, config_path=config_path, device="cpu", hf_model=True) pred = model.predict(image_path=image_path, image_size=image_size) return pred inputs = [ gr.inputs.Image(type="filepath", label="Input Image"), gr.inputs.Dropdown( label="Model Path", choices=[ "kadirnar/yolox_s-v0.1.1", "kadirnar/yolox_m-v0.1.1", "kadirnar/yolox_tiny-v0.1.1", ], default="kadirnar/yolox_s-v0.1.1", ), gr.inputs.Dropdown( label="Config Path", choices=[ "configs.yolox_s", "configs.yolox_m", "configs.yolox_tiny", ], default="configs.yolox_s", ), gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), ] outputs = gr.outputs.Image(type="filepath", label="Output Image") title = "YOLOX is a high-performance anchor-free YOLO." examples = [ ["1.jpg", "kadirnar/yolox_m-v0.1.1", "configs.yolox_m", 640], ["2.jpg", "kadirnar/yolox_s-v0.1.1", "configs.yolox_s", 640], ["3.jpg", "kadirnar/yolox_tiny-v0.1.1", "configs.yolox_tiny", 640], ] demo_app = gr.Interface( fn=yolox_inference, inputs=inputs, outputs=outputs, title=title, examples=examples, cache_examples=True, theme='huggingface', ) demo_app.launch(debug=True, enable_queue=True) COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125], [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]] def get_class_list_from_input(classes_string: str): if classes_string == "": return [] classes_list = classes_string.split(",") classes_list = [x.strip() for x in classes_list] return classes_list def infer(img, model_name: str, prob_threshold: int, classes_to_show = str): feature_extractor = AutoFeatureExtractor.from_pretrained(f"hustvl/{model_name}") model = YolosForObjectDetection.from_pretrained(f"hustvl/{model_name}") img = Image.fromarray(img) pixel_values = feature_extractor(img, return_tensors="pt").pixel_values with torch.no_grad(): outputs = model(pixel_values, output_attentions=True) probas = outputs.logits.softmax(-1)[0, :, :-1] keep = probas.max(-1).values > prob_threshold target_sizes = torch.tensor(img.size[::-1]).unsqueeze(0) postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes) bboxes_scaled = postprocessed_outputs[0]['boxes'] classes_list = get_class_list_from_input(classes_to_show) res_img = plot_results(img, probas[keep], bboxes_scaled[keep], model, classes_list) return res_img def plot_results(pil_img, prob, boxes, model, classes_list): plt.figure(figsize=(16,10)) plt.imshow(pil_img) ax = plt.gca() colors = COLORS * 100 for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors): cl = p.argmax() object_class = model.config.id2label[cl.item()] if len(classes_list) > 0 : if object_class not in classes_list: continue ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=c, linewidth=3)) text = f'{object_class}: {p[cl]:0.2f}' ax.text(xmin, ymin, text, fontsize=15, bbox=dict(facecolor='yellow', alpha=0.5)) plt.axis('off') return fig2img(plt.gcf()) def fig2img(fig): buf = io.BytesIO() fig.savefig(buf) buf.seek(0) img = Image.open(buf) return img description = """Object Detection with YOLOS. Choose https://github.com/amikelive/coco-labels/blob/master/coco-labels-2014_2017.txtyour model and you're good to go. You can adapt the minimum probability threshold with the slider. Additionally you can restrict the classes that will be shown by putting in a comma separated list of [COCO classes](https://github.com/amikelive/coco-labels/blob/master/coco-labels-2014_2017.txt). Leaving the field empty will show all classes""" image_in = gr.components.Image() image_out = gr.components.Image() model_choice = gr.components.Dropdown(["yolos-tiny", "yolos-small", "yolos-base", "yolos-small-300", "yolos-small-dwr"], value="yolos-small", label="YOLOS Model") prob_threshold_slider = gr.components.Slider(minimum=0, maximum=1.0, step=0.01, value=0.9, label="Probability Threshold") classes_to_show = gr.components.Textbox(placeholder="e.g. person, boat", label="Classes to use (empty means all classes)") Iface = gr.Interface( fn=infer, inputs=[image_in,model_choice, prob_threshold_slider, classes_to_show], outputs=image_out, #examples=[["examples/10_People_Marching_People_Marching_2_120.jpg"], ["examples/12_Group_Group_12_Group_Group_12_26.jpg"], ["examples/43_Row_Boat_Canoe_43_247.jpg"]], title="Object Detection with YOLOS", description=description, ).launch()