Spaces:
Running
Running
title: README | |
emoji: ❤️ | |
colorFrom: red | |
colorTo: red | |
sdk: streamlit | |
app_file: app.py | |
pinned: false | |
<p class="lg:col-span-3"> | |
Hugging Face makes it easy to collaboratively build and showcase your <a | |
href="https://keras.io">Keras</a | |
> | |
models!<br /> | |
You can collaborate with your organization, upload and showcase your own models in your profile, or join us in this organization to demo Keras examples! ❤️ | |
</p> | |
<div class="lg:col-span-3"> | |
<p class="mb-4"> | |
To upload your Keras models to the Hub, you can use the <a | |
href="https://github.com/huggingface/huggingface_hub/blob/1f83ed230932128fba8bfe2a7f0c78df66e6e3ee/src/huggingface_hub/keras_mixin.py#L60" | |
>push_to_hub_keras</a | |
> | |
function. | |
</p> | |
<div | |
class="p-4 bg-gradient-to-b from-gray-50-to-white border border-gray-100 rounded-lg relative mb-4" | |
> | |
<pre | |
class="break-words leading-1 whitespace-pre-line text-xs md:text-sm text-gray-800"> | |
!pip install huggingface-hub | |
!huggingface-cli login | |
from huggingface_hub.keras_mixin import push_to_hub_keras | |
push_to_hub_keras(model = model, repo_url = "https://huggingface.co/your-username/name-of-model") | |
</pre> | |
</div> | |
</p> | |
<div class="lg:col-span-3"> | |
<p class="mb-4"> | |
If you'd like to upload 🤗Transformers based Keras checkpoints and let us host your metrics interactively in the repo in with TensorBoard, use <a | |
href="https://huggingface.co/transformers/v4.12.5/_modules/transformers/keras_callbacks.html#PushToHubCallback" | |
>PushToHubCallback</a | |
> | |
like follows: | |
</p> | |
<div | |
class="p-4 bg-gradient-to-b from-gray-50-to-white border border-gray-100 rounded-lg relative mb-4" | |
> | |
<pre | |
class="break-words leading-1 whitespace-pre-line text-xs md:text-sm text-gray-800"> | |
!pip install huggingface-hub | |
!huggingface-cli login | |
from transformers.keras_callbacks import PushToHubCallback | |
from tensorflow.keras.callbacks import TensorBoard as TensorboardCallback | |
tensorboard_callback = TensorBoard(log_dir = "./logs/tensorboard) | |
push_to_hub_callback = PushToHubCallback(output_dir="./logs", tokenizer=tokenizer,hub_model_id=model_id,) | |
callbacks = [tensorboard_callback, push_to_hub_callback] | |
model.fit(..., callbacks=callbacks, ...) | |
</pre> | |
</div> | |