sri-doc / preprocess.py
kavg's picture
Revert "commit before changing entity merging process"
16d7e9b
import torch
from transformers import AutoTokenizer
def normalize_box(box, width, height):
return [
int(1000 * (box[0] / width)),
int(1000 * (box[1] / height)),
int(1000 * (box[2] / width)),
int(1000 * (box[3] / height)),
]
# class to turn the keys of a dict into attributes (thanks Stackoverflow)
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
class Preprocessor():
def __init__(self, tokenizer):
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer)
self.argsdict = {'max_seq_length': 512}
self.args = AttrDict(self.argsdict)
def get_boxes(self, ocr_df, image):
words = list(ocr_df.text)
coordinates = ocr_df[['left', 'top', 'width', 'height']]
actual_boxes = []
width, height = image.size
for idx, row in coordinates.iterrows():
x, y, w, h = tuple(row) # the row comes in (left, top, width, height) format
actual_box = [x, y, x+w, y+h] # we turn it into (left, top, left+widght, top+height) to get the actual box
actual_boxes.append(actual_box)
boxes = []
for box in actual_boxes:
boxes.append(normalize_box(box, width, height))
return words, boxes, actual_boxes
def convert_example_to_features(self, image, words, boxes, actual_boxes, cls_token_box=[0, 0, 0, 0],
sep_token_box=[1000, 1000, 1000, 1000],
pad_token_box=[0, 0, 0, 0]):
width, height = image.size
tokens = []
token_boxes = []
actual_bboxes = [] # we use an extra b because actual_boxes is already used
token_actual_boxes = []
offset_mapping = []
for word, box, actual_bbox in zip(words, boxes, actual_boxes):
word_tokens = self.tokenizer.tokenize(word)
mapping = self.tokenizer(word, return_offsets_mapping=True).offset_mapping
offset_mapping.extend(mapping)
tokens.extend(word_tokens)
token_boxes.extend([box] * len(word_tokens))
actual_bboxes.extend([actual_bbox] * len(word_tokens))
token_actual_boxes.extend([actual_bbox] * len(word_tokens))
# Truncation: account for [CLS] and [SEP] with "- 2".
special_tokens_count = 2
if len(tokens) > self.args.max_seq_length - special_tokens_count:
tokens = tokens[: (self.args.max_seq_length - special_tokens_count)]
token_boxes = token_boxes[: (self.args.max_seq_length - special_tokens_count)]
actual_bboxes = actual_bboxes[: (self.args.max_seq_length - special_tokens_count)]
token_actual_boxes = token_actual_boxes[: (self.args.max_seq_length - special_tokens_count)]
# add [SEP] token, with corresponding token boxes and actual boxes
tokens += [self.tokenizer.sep_token]
token_boxes += [sep_token_box]
actual_bboxes += [[0, 0, width, height]]
token_actual_boxes += [[0, 0, width, height]]
segment_ids = [0] * len(tokens)
# next: [CLS] token
tokens = [self.tokenizer.cls_token] + tokens
token_boxes = [cls_token_box] + token_boxes
actual_bboxes = [[0, 0, width, height]] + actual_bboxes
token_actual_boxes = [[0, 0, width, height]] + token_actual_boxes
segment_ids = [1] + segment_ids
input_ids = self.tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
padding_length = self.args.max_seq_length - len(input_ids)
input_ids += [self.tokenizer.pad_token_id] * padding_length
input_mask += [0] * padding_length
segment_ids += [self.tokenizer.pad_token_id] * padding_length
token_boxes += [pad_token_box] * padding_length
token_actual_boxes += [pad_token_box] * padding_length
assert len(input_ids) == self.args.max_seq_length
assert len(input_mask) == self.args.max_seq_length
assert len(segment_ids) == self.args.max_seq_length
assert len(token_boxes) == self.args.max_seq_length
assert len(token_actual_boxes) == self.args.max_seq_length
return input_ids, input_mask, segment_ids, token_boxes, token_actual_boxes, offset_mapping
def process(self, ocr_df, image):
words, boxes, actual_boxes = self.get_boxes(ocr_df, image)
input_ids, input_mask, segment_ids, token_boxes, token_actual_boxes, offset_mapping = self.convert_example_to_features(image=image, words=words, boxes=boxes, actual_boxes=actual_boxes)
input_ids = torch.tensor(input_ids).unsqueeze(0)
attention_mask = torch.tensor(input_mask).unsqueeze(0)
token_type_ids = torch.tensor(segment_ids).unsqueeze(0)
bbox = torch.tensor(token_boxes).unsqueeze(0)
return input_ids, attention_mask, token_type_ids, bbox, token_actual_boxes, offset_mapping