Revert "commit before changing entity merging process"
Browse files- main.py +10 -3
- ocr.py +4 -4
- preprocess.py +0 -9
main.py
CHANGED
@@ -103,12 +103,19 @@ def ApplyOCR(content):
|
|
103 |
try:
|
104 |
trocr_client = ocr.TrOCRClient(config['settings'].TROCR_API_URL)
|
105 |
handwritten_ocr_df = trocr_client.ocr(handwritten_imgs, image)
|
106 |
-
except
|
107 |
-
print(e)
|
108 |
raise HTTPException(status_code=400, detail="handwritten OCR process failed")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
ocr_df = pd.concat([handwritten_ocr_df, printed_ocr_df])
|
111 |
-
# ocr_df = printed_ocr_df
|
112 |
return ocr_df, image
|
113 |
|
114 |
|
|
|
103 |
try:
|
104 |
trocr_client = ocr.TrOCRClient(config['settings'].TROCR_API_URL)
|
105 |
handwritten_ocr_df = trocr_client.ocr(handwritten_imgs, image)
|
106 |
+
except:
|
|
|
107 |
raise HTTPException(status_code=400, detail="handwritten OCR process failed")
|
108 |
+
|
109 |
+
try:
|
110 |
+
jpeg_bytes = io.BytesIO()
|
111 |
+
printed_img.save(jpeg_bytes, format='JPEG')
|
112 |
+
jpeg_content = jpeg_bytes.getvalue()
|
113 |
+
vision_client = ocr.VisionClient(config['settings'].GCV_AUTH)
|
114 |
+
printed_ocr_df = vision_client.ocr(jpeg_content, printed_img)
|
115 |
+
except:
|
116 |
+
raise HTTPException(status_code=400, detail="Printed OCR process failed")
|
117 |
|
118 |
ocr_df = pd.concat([handwritten_ocr_df, printed_ocr_df])
|
|
|
119 |
return ocr_df, image
|
120 |
|
121 |
|
ocr.py
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
from google.cloud import vision
|
2 |
from google.oauth2 import service_account
|
|
|
3 |
import pandas as pd
|
4 |
import json
|
5 |
import numpy as np
|
|
|
6 |
import io
|
7 |
import requests
|
8 |
-
from preprocess import cam_scanner_filter
|
9 |
|
10 |
image_ext = ("*.jpg", "*.jpeg", "*.png")
|
11 |
|
@@ -22,7 +23,7 @@ class VisionClient:
|
|
22 |
except ValueError as e:
|
23 |
print("Image could not be read")
|
24 |
return
|
25 |
-
response = self.client.document_text_detection(image, timeout=
|
26 |
return response
|
27 |
|
28 |
def get_response(self, content):
|
@@ -133,8 +134,7 @@ class TrOCRClient():
|
|
133 |
boxObjects = []
|
134 |
for i in range(len(handwritten_imgs)):
|
135 |
handwritten_img = handwritten_imgs[i]
|
136 |
-
|
137 |
-
ocr_result = self.send_request(handwritten_img_processed)
|
138 |
boxObjects.append({
|
139 |
"id": i-1,
|
140 |
"text": ocr_result,
|
|
|
1 |
from google.cloud import vision
|
2 |
from google.oauth2 import service_account
|
3 |
+
from google.protobuf.json_format import MessageToJson
|
4 |
import pandas as pd
|
5 |
import json
|
6 |
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
import io
|
9 |
import requests
|
|
|
10 |
|
11 |
image_ext = ("*.jpg", "*.jpeg", "*.png")
|
12 |
|
|
|
23 |
except ValueError as e:
|
24 |
print("Image could not be read")
|
25 |
return
|
26 |
+
response = self.client.document_text_detection(image, timeout=10)
|
27 |
return response
|
28 |
|
29 |
def get_response(self, content):
|
|
|
134 |
boxObjects = []
|
135 |
for i in range(len(handwritten_imgs)):
|
136 |
handwritten_img = handwritten_imgs[i]
|
137 |
+
ocr_result = self.send_request(handwritten_img[0])
|
|
|
138 |
boxObjects.append({
|
139 |
"id": i-1,
|
140 |
"text": ocr_result,
|
preprocess.py
CHANGED
@@ -1,8 +1,5 @@
|
|
1 |
import torch
|
2 |
from transformers import AutoTokenizer
|
3 |
-
import cv2
|
4 |
-
from PIL import Image
|
5 |
-
import numpy as np
|
6 |
|
7 |
def normalize_box(box, width, height):
|
8 |
return [
|
@@ -12,12 +9,6 @@ def normalize_box(box, width, height):
|
|
12 |
int(1000 * (box[3] / height)),
|
13 |
]
|
14 |
|
15 |
-
def cam_scanner_filter(img):
|
16 |
-
image1 = np.array(img)
|
17 |
-
img = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)
|
18 |
-
thresh2 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY, 199, 15)
|
19 |
-
return Image.fromarray(thresh2)
|
20 |
-
|
21 |
# class to turn the keys of a dict into attributes (thanks Stackoverflow)
|
22 |
class AttrDict(dict):
|
23 |
def __init__(self, *args, **kwargs):
|
|
|
1 |
import torch
|
2 |
from transformers import AutoTokenizer
|
|
|
|
|
|
|
3 |
|
4 |
def normalize_box(box, width, height):
|
5 |
return [
|
|
|
9 |
int(1000 * (box[3] / height)),
|
10 |
]
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
# class to turn the keys of a dict into attributes (thanks Stackoverflow)
|
13 |
class AttrDict(dict):
|
14 |
def __init__(self, *args, **kwargs):
|