Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,272 +1,820 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
gr.Markdown(f"# Document Knowledge Assistant v{VERSION}")
|
30 |
-
gr.Markdown("Ask questions about your documents and get comprehensive AI-powered answers")
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
with gr.Accordion("Advanced Settings", open=False):
|
76 |
-
gr.Markdown("### Search & Response Settings")
|
77 |
-
num_results = gr.Slider(
|
78 |
-
minimum=3,
|
79 |
-
maximum=15,
|
80 |
-
value=config.default_top_k,
|
81 |
-
step=1,
|
82 |
-
label="Documents to search",
|
83 |
-
info="Higher values provide more context"
|
84 |
-
)
|
85 |
-
|
86 |
-
temperature_slider = gr.Slider(
|
87 |
-
minimum=0.0,
|
88 |
-
maximum=1.0,
|
89 |
-
value=config.temperature,
|
90 |
-
step=0.05,
|
91 |
-
label="Creativity",
|
92 |
-
info="Lower = more factual, Higher = more creative"
|
93 |
-
)
|
94 |
-
|
95 |
-
max_tokens_slider = gr.Slider(
|
96 |
-
minimum=500,
|
97 |
-
maximum=4000,
|
98 |
-
value=config.max_tokens,
|
99 |
-
step=100,
|
100 |
-
label="Response Length",
|
101 |
-
info="Maximum words in response"
|
102 |
-
)
|
103 |
-
|
104 |
-
# Database stats - simplified
|
105 |
-
with gr.Accordion("System Info", open=False):
|
106 |
-
stats_display = gr.Markdown(get_db_stats(vector_store))
|
107 |
-
|
108 |
-
gr.Markdown(f"""
|
109 |
-
**System Details:**
|
110 |
-
- Version: {VERSION}
|
111 |
-
- Embedding: {vector_store.embedding_engine.model_name}
|
112 |
-
- Device: {vector_store.embedding_engine.device}
|
113 |
-
""")
|
114 |
-
refresh_button = gr.Button("Refresh", variant="secondary", size="sm")
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
search_output = gr.Markdown()
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
|
137 |
-
|
|
|
|
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
else:
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
try:
|
168 |
-
#
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
model=model
|
178 |
-
)
|
179 |
-
|
180 |
-
# Add to history
|
181 |
-
timestamp = datetime.now().strftime("%H:%M")
|
182 |
-
query_history.append([timestamp, query, model])
|
183 |
-
|
184 |
-
# Keep only the last 100 queries
|
185 |
-
if len(query_history) > 100:
|
186 |
-
query_history.pop(0)
|
187 |
-
|
188 |
-
# Update the history display with the most recent entries (reverse chronological)
|
189 |
-
recent_history = list(reversed(query_history[-5:])) if len(query_history) >= 5 else list(reversed(query_history))
|
190 |
-
|
191 |
-
# Calculate elapsed time
|
192 |
-
elapsed_time = (datetime.now() - start_time).total_seconds()
|
193 |
-
|
194 |
-
# Add subtle timing information to the response
|
195 |
-
response_with_timing = f"{response}\n\n<small>Answered in {elapsed_time:.1f}s</small>"
|
196 |
-
|
197 |
-
return response_with_timing, search_output_text, recent_history
|
198 |
-
|
199 |
except Exception as e:
|
200 |
-
|
201 |
-
logger.error(error_msg)
|
202 |
-
logger.error(traceback.format_exc())
|
203 |
-
return "I encountered an error while processing your question. Please try again or check your API key settings.", "", query_history[-5:] if query_history else []
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
)
|
|
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
outputs=[query_input, response_output, search_output, history_list]
|
232 |
-
)
|
233 |
|
234 |
-
#
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
)
|
240 |
|
241 |
-
|
242 |
-
|
243 |
-
["What are the main features of this application?"],
|
244 |
-
["How does the retrieval augmented generation work?"],
|
245 |
-
["Can you explain the embedding models used in this system?"],
|
246 |
-
]
|
247 |
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
)
|
255 |
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
except Exception as e:
|
267 |
-
logger.
|
268 |
-
|
269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
try:
|
271 |
logger.info(f"Loading document: {file_path}")
|
272 |
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import logging
|
4 |
+
from pathlib import Path
|
5 |
+
import json
|
6 |
+
from datetime import datetime
|
7 |
+
from typing import List, Dict, Any, Optional, Tuple, Union
|
8 |
+
import traceback
|
9 |
+
|
10 |
+
# Configure detailed logging with file output
|
11 |
+
LOG_DIR = "logs"
|
12 |
+
os.makedirs(LOG_DIR, exist_ok=True)
|
13 |
+
log_file = os.path.join(LOG_DIR, f"rag_system_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log")
|
14 |
+
|
15 |
+
# Set up root logger with both file and console handlers
|
16 |
+
logging.basicConfig(
|
17 |
+
level=logging.INFO,
|
18 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
19 |
+
handlers=[
|
20 |
+
logging.FileHandler(log_file),
|
21 |
+
logging.StreamHandler(sys.stdout)
|
22 |
+
]
|
23 |
+
)
|
24 |
+
logger = logging.getLogger("rag_system")
|
25 |
+
logger.info(f"Starting RAG system. Log file: {log_file}")
|
26 |
+
|
27 |
+
# Importing necessary libraries with error handling
|
28 |
+
try:
|
29 |
+
import torch
|
30 |
+
import numpy as np
|
31 |
+
from sentence_transformers import SentenceTransformer
|
32 |
+
import chromadb
|
33 |
+
from chromadb.utils import embedding_functions
|
34 |
+
import gradio as gr
|
35 |
+
from openai import OpenAI
|
36 |
+
import google.generativeai as genai
|
37 |
+
logger.info("All required libraries successfully imported")
|
38 |
+
except ImportError as e:
|
39 |
+
logger.critical(f"Failed to import required libraries: {e}")
|
40 |
+
print(f"ERROR: Missing required libraries. Please install with: pip install -r requirements.txt")
|
41 |
+
print(f"Specific error: {e}")
|
42 |
+
sys.exit(1)
|
43 |
+
|
44 |
+
# Version info for tracking
|
45 |
+
VERSION = "1.1.0"
|
46 |
+
logger.info(f"RAG System Version: {VERSION}")
|
47 |
+
|
48 |
+
# Custom CSS for better UI
|
49 |
+
custom_css = """
|
50 |
+
.gradio-container {
|
51 |
+
max-width: 1200px;
|
52 |
+
margin: auto;
|
53 |
+
}
|
54 |
+
.gr-prose h1 {
|
55 |
+
font-size: 2.5rem;
|
56 |
+
margin-bottom: 1rem;
|
57 |
+
color: #1a5276;
|
58 |
+
}
|
59 |
+
.gr-prose h3 {
|
60 |
+
font-size: 1.25rem;
|
61 |
+
font-weight: 600;
|
62 |
+
margin-top: 1rem;
|
63 |
+
margin-bottom: 0.5rem;
|
64 |
+
color: #2874a6;
|
65 |
+
}
|
66 |
+
.container {
|
67 |
+
margin: 0 auto;
|
68 |
+
padding: 2rem;
|
69 |
+
}
|
70 |
+
.gr-box {
|
71 |
+
border-radius: 8px;
|
72 |
+
box-shadow: 0 1px 3px rgba(0,0,0,0.12), 0 1px 2px rgba(0,0,0,0.24);
|
73 |
+
padding: 1rem;
|
74 |
+
margin-bottom: 1rem;
|
75 |
+
background-color: #f9f9f9;
|
76 |
+
}
|
77 |
+
.footer {
|
78 |
+
text-align: center;
|
79 |
+
font-size: 0.8rem;
|
80 |
+
color: #666;
|
81 |
+
margin-top: 2rem;
|
82 |
+
}
|
83 |
+
"""
|
84 |
+
|
85 |
+
class Config:
|
86 |
+
"""
|
87 |
+
Configuration for vector store and RAG system.
|
88 |
|
89 |
+
This class centralizes all configuration parameters for the application,
|
90 |
+
making it easier to modify settings and ensure consistency.
|
91 |
+
|
92 |
+
Attributes:
|
93 |
+
local_dir (str): Directory for ChromaDB persistence
|
94 |
+
embedding_model (str): Name of the embedding model to use
|
95 |
+
collection_name (str): Name of the ChromaDB collection
|
96 |
+
default_top_k (int): Default number of results to return
|
97 |
+
openai_model (str): Default OpenAI model to use
|
98 |
+
gemini_model (str): Default Gemini model to use
|
99 |
+
temperature (float): Temperature setting for LLM generation
|
100 |
+
max_tokens (int): Maximum tokens for LLM response
|
101 |
+
system_name (str): Name of the system for UI
|
102 |
+
context_limit (int): Maximum characters to include in context
|
103 |
+
"""
|
104 |
+
|
105 |
+
def __init__(self,
|
106 |
+
local_dir: str = "./chroma_db",
|
107 |
+
embedding_model: str = "all-MiniLM-L6-v2",
|
108 |
+
collection_name: str = "markdown_docs",
|
109 |
+
default_top_k: int = 8, # Increased from 5 to 8 for more context
|
110 |
+
openai_model: str = "gpt-4o-mini",
|
111 |
+
gemini_model: str = "gemini-1.5-flash",
|
112 |
+
temperature: float = 0.3,
|
113 |
+
max_tokens: int = 2000, # Increased from 1000 to 2000 for more comprehensive responses
|
114 |
+
system_name: str = "Document Knowledge Assistant",
|
115 |
+
context_limit: int = 16000): # Increased context limit for more comprehensive context
|
116 |
+
self.local_dir = local_dir
|
117 |
+
self.embedding_model = embedding_model
|
118 |
+
self.collection_name = collection_name
|
119 |
+
self.default_top_k = default_top_k
|
120 |
+
self.openai_model = openai_model
|
121 |
+
self.gemini_model = gemini_model
|
122 |
+
self.temperature = temperature
|
123 |
+
self.max_tokens = max_tokens
|
124 |
+
self.system_name = system_name
|
125 |
+
self.context_limit = context_limit
|
126 |
|
127 |
+
# Create local directory if it doesn't exist
|
128 |
+
os.makedirs(local_dir, exist_ok=True)
|
129 |
|
130 |
+
logger.info(f"Initialized configuration: {self.__dict__}")
|
131 |
+
|
132 |
+
def to_dict(self) -> Dict[str, Any]:
|
133 |
+
"""Convert configuration to dictionary for serialization"""
|
134 |
+
return self.__dict__
|
135 |
+
|
136 |
+
@classmethod
|
137 |
+
def from_file(cls, config_path: str) -> 'Config':
|
138 |
+
"""Load configuration from JSON file"""
|
139 |
+
try:
|
140 |
+
with open(config_path, 'r') as f:
|
141 |
+
config_dict = json.load(f)
|
142 |
+
logger.info(f"Loaded configuration from {config_path}")
|
143 |
+
return cls(**config_dict)
|
144 |
+
except Exception as e:
|
145 |
+
logger.error(f"Failed to load configuration from {config_path}: {e}")
|
146 |
+
logger.info("Using default configuration")
|
147 |
+
return cls()
|
148 |
+
|
149 |
+
def save_to_file(self, config_path: str) -> bool:
|
150 |
+
"""Save configuration to JSON file"""
|
151 |
+
try:
|
152 |
+
with open(config_path, 'w') as f:
|
153 |
+
json.dump(self.to_dict(), f, indent=2)
|
154 |
+
logger.info(f"Saved configuration to {config_path}")
|
155 |
+
return True
|
156 |
+
except Exception as e:
|
157 |
+
logger.error(f"Failed to save configuration to {config_path}: {e}")
|
158 |
+
return False
|
159 |
+
|
160 |
+
class EmbeddingEngine:
|
161 |
+
"""
|
162 |
+
Handle embeddings with a lightweight model.
|
163 |
+
|
164 |
+
This class manages the embedding model used to convert text to vector
|
165 |
+
representations for semantic search.
|
166 |
+
|
167 |
+
Attributes:
|
168 |
+
model (SentenceTransformer): The loaded embedding model
|
169 |
+
model_name (str): Name of the successfully loaded model
|
170 |
+
vector_size (int): Dimension of the embedding vectors
|
171 |
+
device (str): Device used for inference ('cuda' or 'cpu')
|
172 |
+
"""
|
173 |
+
|
174 |
+
def __init__(self, model_name="all-MiniLM-L6-v2"):
|
175 |
+
"""
|
176 |
+
Initialize the embedding engine with the specified model.
|
177 |
|
178 |
+
Args:
|
179 |
+
model_name (str): Name of the embedding model to load
|
|
|
|
|
180 |
|
181 |
+
Raises:
|
182 |
+
SystemExit: If no embedding model could be loaded
|
183 |
+
"""
|
184 |
+
# Use GPU if available
|
185 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
186 |
+
logger.info(f"Using device for embeddings: {self.device}")
|
187 |
+
|
188 |
+
# Try multiple model options in order of preference
|
189 |
+
model_options = [
|
190 |
+
model_name,
|
191 |
+
"all-MiniLM-L6-v2", # Good balance of speed and quality
|
192 |
+
"paraphrase-MiniLM-L3-v2", # Faster but less accurate
|
193 |
+
"all-mpnet-base-v2" # Higher quality but larger model
|
194 |
+
]
|
195 |
+
|
196 |
+
self.model = None
|
197 |
+
|
198 |
+
# Try each model in order until one works
|
199 |
+
for model_option in model_options:
|
200 |
+
try:
|
201 |
+
logger.info(f"Attempting to load embedding model: {model_option}")
|
202 |
+
self.model = SentenceTransformer(model_option)
|
203 |
|
204 |
+
# Move model to device
|
205 |
+
self.model.to(self.device)
|
206 |
+
|
207 |
+
logger.info(f"Successfully loaded embedding model: {model_option}")
|
208 |
+
self.model_name = model_option
|
209 |
+
self.vector_size = self.model.get_sentence_embedding_dimension()
|
210 |
+
logger.info(f"Embedding vector size: {self.vector_size}")
|
211 |
+
break
|
212 |
+
|
213 |
+
except Exception as e:
|
214 |
+
logger.warning(f"Failed to load embedding model {model_option}: {str(e)}")
|
215 |
+
|
216 |
+
if self.model is None:
|
217 |
+
error_msg = "Failed to load any embedding model. Please check your internet connection or install models locally."
|
218 |
+
logger.critical(error_msg)
|
219 |
+
raise SystemExit(error_msg)
|
220 |
+
|
221 |
+
def embed(self, texts: List[str]) -> np.ndarray:
|
222 |
+
"""
|
223 |
+
Generate embeddings for a list of texts.
|
224 |
+
|
225 |
+
Args:
|
226 |
+
texts (List[str]): List of texts to embed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
+
Returns:
|
229 |
+
np.ndarray: Array of embeddings
|
|
|
230 |
|
231 |
+
Raises:
|
232 |
+
ValueError: If the input is invalid
|
233 |
+
RuntimeError: If embedding fails
|
234 |
+
"""
|
235 |
+
if not texts:
|
236 |
+
raise ValueError("Cannot embed empty list of texts")
|
237 |
+
|
238 |
+
try:
|
239 |
+
embeddings = self.model.encode(texts, convert_to_numpy=True)
|
240 |
+
return embeddings
|
241 |
+
except Exception as e:
|
242 |
+
logger.error(f"Error generating embeddings: {e}")
|
243 |
+
raise RuntimeError(f"Failed to generate embeddings: {e}")
|
244 |
+
|
245 |
+
class VectorStoreManager:
|
246 |
+
"""
|
247 |
+
Manage Chroma vector store operations - upload, query, etc.
|
248 |
+
|
249 |
+
This class provides an interface to the ChromaDB vector database,
|
250 |
+
handling document storage, retrieval, and management.
|
251 |
+
|
252 |
+
Attributes:
|
253 |
+
config (Config): Configuration parameters
|
254 |
+
client (chromadb.PersistentClient): ChromaDB client
|
255 |
+
collection (chromadb.Collection): The active ChromaDB collection
|
256 |
+
embedding_engine (EmbeddingEngine): Engine for generating embeddings
|
257 |
+
"""
|
258 |
+
|
259 |
+
def __init__(self, config: Config):
|
260 |
+
"""
|
261 |
+
Initialize the vector store manager.
|
262 |
+
|
263 |
+
Args:
|
264 |
+
config (Config): Configuration parameters
|
265 |
|
266 |
+
Raises:
|
267 |
+
SystemExit: If the vector store cannot be initialized
|
268 |
+
"""
|
269 |
+
self.config = config
|
270 |
|
271 |
+
# Initialize Chroma client (local persistence)
|
272 |
+
logger.info(f"Initializing Chroma at {config.local_dir}")
|
273 |
+
try:
|
274 |
+
self.client = chromadb.PersistentClient(path=config.local_dir)
|
275 |
+
logger.info("ChromaDB client initialized successfully")
|
276 |
+
except Exception as e:
|
277 |
+
error_msg = f"Failed to initialize ChromaDB client: {e}"
|
278 |
+
logger.critical(error_msg)
|
279 |
+
raise SystemExit(error_msg)
|
280 |
+
|
281 |
+
# Get or create collection
|
282 |
+
try:
|
283 |
+
# Initialize embedding model
|
284 |
+
logger.info("Loading embedding model...")
|
285 |
+
self.embedding_engine = EmbeddingEngine(config.embedding_model)
|
286 |
+
logger.info(f"Using embedding model: {self.embedding_engine.model_name}")
|
287 |
+
|
288 |
+
# Create embedding function
|
289 |
+
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
|
290 |
+
model_name=self.embedding_engine.model_name
|
291 |
+
)
|
292 |
+
|
293 |
+
# Try to get existing collection or create a new one
|
294 |
+
try:
|
295 |
+
self.collection = self.client.get_collection(
|
296 |
+
name=config.collection_name,
|
297 |
+
embedding_function=sentence_transformer_ef
|
298 |
+
)
|
299 |
+
logger.info(f"Using existing collection: {config.collection_name}")
|
300 |
+
except Exception as e:
|
301 |
+
logger.warning(f"Error getting collection: {e}")
|
302 |
+
# Attempt to get a list of available collections
|
303 |
+
collections = self.client.list_collections()
|
304 |
+
if collections:
|
305 |
+
logger.info(f"Available collections: {[c.name for c in collections]}")
|
306 |
+
# Use the first available collection if any
|
307 |
+
self.collection = self.client.get_collection(
|
308 |
+
name=collections[0].name,
|
309 |
+
embedding_function=sentence_transformer_ef
|
310 |
+
)
|
311 |
+
logger.info(f"Using collection: {collections[0].name}")
|
312 |
else:
|
313 |
+
# Create new collection if none exist
|
314 |
+
self.collection = self.client.create_collection(
|
315 |
+
name=config.collection_name,
|
316 |
+
embedding_function=sentence_transformer_ef,
|
317 |
+
metadata={"hnsw:space": "cosine"}
|
318 |
+
)
|
319 |
+
logger.info(f"Created new collection: {config.collection_name}")
|
320 |
|
321 |
+
except Exception as e:
|
322 |
+
error_msg = f"Error initializing Chroma collection: {e}"
|
323 |
+
logger.critical(error_msg)
|
324 |
+
raise SystemExit(error_msg)
|
325 |
+
|
326 |
+
def query(self, query_text: str, n_results: int = 5) -> List[Dict]:
|
327 |
+
"""
|
328 |
+
Query the vector store with a text query.
|
329 |
+
|
330 |
+
Args:
|
331 |
+
query_text (str): The query text
|
332 |
+
n_results (int): Number of results to return
|
333 |
|
334 |
+
Returns:
|
335 |
+
List[Dict]: List of results with document text, metadata, and similarity score
|
336 |
+
"""
|
337 |
+
if not query_text.strip():
|
338 |
+
logger.warning("Empty query received")
|
339 |
+
return []
|
340 |
+
|
341 |
+
try:
|
342 |
+
logger.info(f"Querying vector store with: '{query_text[:50]}...' (top {n_results})")
|
343 |
+
|
344 |
+
# Query the collection
|
345 |
+
search_results = self.collection.query(
|
346 |
+
query_texts=[query_text],
|
347 |
+
n_results=n_results,
|
348 |
+
include=["documents", "metadatas", "distances"]
|
349 |
+
)
|
350 |
+
|
351 |
+
# Format results
|
352 |
+
results = []
|
353 |
+
if search_results["documents"] and len(search_results["documents"][0]) > 0:
|
354 |
+
for i in range(len(search_results["documents"][0])):
|
355 |
+
results.append({
|
356 |
+
'document': search_results["documents"][0][i],
|
357 |
+
'metadata': search_results["metadatas"][0][i] if search_results["metadatas"] else {},
|
358 |
+
'score': 1.0 - search_results["distances"][0][i], # Convert distance to similarity
|
359 |
+
'distance': search_results["distances"][0][i]
|
360 |
+
})
|
361 |
|
362 |
+
logger.info(f"Found {len(results)} results for query")
|
363 |
+
else:
|
364 |
+
logger.info("No results found for query")
|
365 |
+
|
366 |
+
return results
|
367 |
+
except Exception as e:
|
368 |
+
logger.error(f"Error querying collection: {e}")
|
369 |
+
logger.debug(traceback.format_exc())
|
370 |
+
return []
|
371 |
+
|
372 |
+
def add_document(self,
|
373 |
+
document: str,
|
374 |
+
doc_id: str,
|
375 |
+
metadata: Dict[str, Any]) -> bool:
|
376 |
+
"""
|
377 |
+
Add a document to the vector store.
|
378 |
+
|
379 |
+
Args:
|
380 |
+
document (str): The document text
|
381 |
+
doc_id (str): Unique identifier for the document
|
382 |
+
metadata (Dict[str, Any]): Metadata about the document
|
383 |
+
|
384 |
+
Returns:
|
385 |
+
bool: True if successful, False otherwise
|
386 |
+
"""
|
387 |
+
try:
|
388 |
+
logger.info(f"Adding document '{doc_id}' to vector store")
|
389 |
+
|
390 |
+
# Add the document to the collection
|
391 |
+
self.collection.add(
|
392 |
+
documents=[document],
|
393 |
+
ids=[doc_id],
|
394 |
+
metadatas=[metadata]
|
395 |
+
)
|
396 |
+
|
397 |
+
logger.info(f"Successfully added document '{doc_id}'")
|
398 |
+
return True
|
399 |
+
except Exception as e:
|
400 |
+
logger.error(f"Error adding document to collection: {e}")
|
401 |
+
return False
|
402 |
+
|
403 |
+
def delete_document(self, doc_id: str) -> bool:
|
404 |
+
"""
|
405 |
+
Delete a document from the vector store.
|
406 |
+
|
407 |
+
Args:
|
408 |
+
doc_id (str): ID of the document to delete
|
409 |
+
|
410 |
+
Returns:
|
411 |
+
bool: True if successful, False otherwise
|
412 |
+
"""
|
413 |
+
try:
|
414 |
+
logger.info(f"Deleting document '{doc_id}' from vector store")
|
415 |
+
self.collection.delete(ids=[doc_id])
|
416 |
+
logger.info(f"Successfully deleted document '{doc_id}'")
|
417 |
+
return True
|
418 |
+
except Exception as e:
|
419 |
+
logger.error(f"Error deleting document from collection: {e}")
|
420 |
+
return False
|
421 |
+
|
422 |
+
def get_statistics(self) -> Dict[str, Any]:
|
423 |
+
"""
|
424 |
+
Get statistics about the vector store.
|
425 |
+
|
426 |
+
Returns:
|
427 |
+
Dict[str, Any]: Statistics about the vector store
|
428 |
+
"""
|
429 |
+
stats = {
|
430 |
+
'collection_name': self.config.collection_name,
|
431 |
+
'embedding_model': self.embedding_engine.model_name,
|
432 |
+
'embedding_dimensions': self.embedding_engine.vector_size,
|
433 |
+
'device': self.embedding_engine.device
|
434 |
+
}
|
435 |
+
|
436 |
+
try:
|
437 |
+
# Get collection count
|
438 |
+
collection_count = self.collection.count()
|
439 |
+
stats['total_documents'] = collection_count
|
440 |
+
|
441 |
+
# Get unique metadata values
|
442 |
+
if collection_count > 0:
|
443 |
try:
|
444 |
+
# Get a sample of document metadata
|
445 |
+
sample_results = self.collection.get(limit=min(collection_count, 100))
|
446 |
+
if sample_results and 'metadatas' in sample_results and sample_results['metadatas']:
|
447 |
+
# Count unique files if filename exists in metadata
|
448 |
+
filenames = set()
|
449 |
+
for metadata in sample_results['metadatas']:
|
450 |
+
if 'filename' in metadata:
|
451 |
+
filenames.add(metadata['filename'])
|
452 |
+
stats['unique_files'] = len(filenames)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
453 |
except Exception as e:
|
454 |
+
logger.warning(f"Error getting metadata statistics: {e}")
|
|
|
|
|
|
|
455 |
|
456 |
+
logger.info(f"Vector store statistics: {stats}")
|
457 |
+
except Exception as e:
|
458 |
+
logger.error(f"Error getting statistics: {e}")
|
459 |
+
stats['error'] = str(e)
|
460 |
+
|
461 |
+
return stats
|
462 |
+
|
463 |
+
class RAGSystem:
|
464 |
+
"""
|
465 |
+
Retrieval-Augmented Generation with multiple LLM providers.
|
466 |
+
|
467 |
+
This class handles the RAG workflow: retrieval of relevant documents,
|
468 |
+
formatting context, and generating responses with different LLM providers.
|
469 |
+
|
470 |
+
Attributes:
|
471 |
+
vector_store (VectorStoreManager): Manager for vector store operations
|
472 |
+
openai_client (Optional[OpenAI]): OpenAI client
|
473 |
+
gemini_configured (bool): Whether Gemini API is configured
|
474 |
+
config (Config): Configuration parameters
|
475 |
+
"""
|
476 |
+
|
477 |
+
def __init__(self, vector_store: VectorStoreManager, config: Config):
|
478 |
+
"""
|
479 |
+
Initialize the RAG system.
|
480 |
+
|
481 |
+
Args:
|
482 |
+
vector_store (VectorStoreManager): Vector store manager
|
483 |
+
config (Config): Configuration parameters
|
484 |
+
"""
|
485 |
+
self.vector_store = vector_store
|
486 |
+
self.config = config
|
487 |
+
self.openai_client = None
|
488 |
+
self.gemini_configured = False
|
489 |
+
|
490 |
+
logger.info("Initialized RAG system")
|
491 |
+
|
492 |
+
def setup_openai(self, api_key: str) -> bool:
|
493 |
+
"""
|
494 |
+
Set up OpenAI client with API key.
|
495 |
+
|
496 |
+
Args:
|
497 |
+
api_key (str): OpenAI API key
|
498 |
|
499 |
+
Returns:
|
500 |
+
bool: True if successful, False otherwise
|
501 |
+
"""
|
502 |
+
if not api_key.strip():
|
503 |
+
logger.warning("Empty OpenAI API key provided")
|
504 |
+
return False
|
505 |
|
506 |
+
try:
|
507 |
+
logger.info("Setting up OpenAI client")
|
508 |
+
self.openai_client = OpenAI(api_key=api_key)
|
509 |
+
# Test the API key with a simple request
|
510 |
+
response = self.openai_client.chat.completions.create(
|
511 |
+
model=self.config.openai_model,
|
512 |
+
messages=[
|
513 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
514 |
+
{"role": "user", "content": "Test connection"}
|
515 |
+
],
|
516 |
+
max_tokens=10
|
517 |
)
|
518 |
+
logger.info("OpenAI client configured successfully")
|
519 |
+
return True
|
520 |
+
except Exception as e:
|
521 |
+
logger.error(f"Error initializing OpenAI client: {e}")
|
522 |
+
self.openai_client = None
|
523 |
+
return False
|
524 |
+
|
525 |
+
def setup_gemini(self, api_key: str) -> bool:
|
526 |
+
"""
|
527 |
+
Set up Gemini with API key.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
api_key (str): Google AI API key
|
531 |
|
532 |
+
Returns:
|
533 |
+
bool: True if successful, False otherwise
|
534 |
+
"""
|
535 |
+
if not api_key.strip():
|
536 |
+
logger.warning("Empty Gemini API key provided")
|
537 |
+
return False
|
538 |
|
539 |
+
try:
|
540 |
+
logger.info("Setting up Gemini client")
|
541 |
+
genai.configure(api_key=api_key)
|
|
|
|
|
542 |
|
543 |
+
# Test the API key with a simple request
|
544 |
+
model = genai.GenerativeModel(self.config.gemini_model)
|
545 |
+
response = model.generate_content("Test connection")
|
546 |
+
|
547 |
+
self.gemini_configured = True
|
548 |
+
logger.info("Gemini client configured successfully")
|
549 |
+
return True
|
550 |
+
except Exception as e:
|
551 |
+
logger.error(f"Error configuring Gemini: {e}")
|
552 |
+
self.gemini_configured = False
|
553 |
+
return False
|
554 |
+
|
555 |
+
def format_context(self, documents: List[Dict]) -> str:
|
556 |
+
"""
|
557 |
+
Format retrieved documents into context for the LLM.
|
558 |
+
|
559 |
+
Args:
|
560 |
+
documents (List[Dict]): List of retrieved documents
|
561 |
+
|
562 |
+
Returns:
|
563 |
+
str: Formatted context for the LLM
|
564 |
+
"""
|
565 |
+
if not documents:
|
566 |
+
logger.warning("No documents provided for context formatting")
|
567 |
+
return "No relevant documents found."
|
568 |
+
|
569 |
+
logger.info(f"Formatting {len(documents)} documents for context")
|
570 |
+
context_parts = []
|
571 |
+
|
572 |
+
for i, doc in enumerate(documents):
|
573 |
+
metadata = doc['metadata']
|
574 |
+
# Extract document metadata in a robust way
|
575 |
+
title = metadata.get('title', metadata.get('filename', 'Unknown document'))
|
576 |
+
|
577 |
+
# Format header with just essential metadata for cleaner context
|
578 |
+
header = f"Document {i+1} - {title}"
|
579 |
+
|
580 |
+
# For readability, limit length of context document (using config value)
|
581 |
+
doc_text = doc['document']
|
582 |
+
if len(doc_text) > (self.config.context_limit // len(documents)):
|
583 |
+
# Divide context limit among the documents
|
584 |
+
max_length = self.config.context_limit // len(documents)
|
585 |
+
doc_text = doc_text[:max_length] + "... [Document truncated for brevity]"
|
586 |
+
|
587 |
+
context_parts.append(f"{header}:\n{doc_text}\n")
|
588 |
+
|
589 |
+
full_context = "\n".join(context_parts)
|
590 |
+
logger.info(f"Created context with {len(full_context)} characters")
|
591 |
+
|
592 |
+
return full_context
|
593 |
+
|
594 |
+
def generate_response_openai(self, query: str, context: str) -> str:
|
595 |
+
"""
|
596 |
+
Generate a response using OpenAI model with context.
|
597 |
+
|
598 |
+
Args:
|
599 |
+
query (str): User query
|
600 |
+
context (str): Formatted document context
|
601 |
+
|
602 |
+
Returns:
|
603 |
+
str: Generated response
|
604 |
+
"""
|
605 |
+
if not self.openai_client:
|
606 |
+
logger.warning("OpenAI API key not configured for response generation")
|
607 |
+
return "Please configure an OpenAI API key to use this feature. Enter your API key in the field and click 'Save API Key'."
|
608 |
+
|
609 |
+
# Improved system prompt for better, more comprehensive responses
|
610 |
+
system_prompt = """
|
611 |
+
You are an exceptionally helpful, clear, and friendly AI research assistant. Your goal is to provide comprehensive, well-structured, and insightful answers based on the provided document context.
|
612 |
+
|
613 |
+
Guidelines for your response:
|
614 |
+
|
615 |
+
1. USE ONLY the information contained in the provided context documents to form your answer. If the context doesn't contain enough information to provide a complete answer, acknowledge this limitation clearly.
|
616 |
+
|
617 |
+
2. Always provide well-structured, detailed responses between 300-500 words that thoroughly address the user's question.
|
618 |
+
|
619 |
+
3. Format your response with clear headings, bullet points, or numbered lists when appropriate to enhance readability.
|
620 |
+
|
621 |
+
4. Cite your sources by referring to the document numbers (e.g., "According to Document 1...") to support your claims.
|
622 |
+
|
623 |
+
5. Use a friendly, conversational, and supportive tone that makes complex information accessible.
|
624 |
+
|
625 |
+
6. If different documents offer conflicting information, acknowledge these differences and present both perspectives without bias.
|
626 |
+
|
627 |
+
7. When appropriate, organize information into logical categories or chronological order to improve clarity.
|
628 |
+
|
629 |
+
8. Use examples from the documents to illustrate key points when available.
|
630 |
+
|
631 |
+
9. Conclude with a brief summary of the main points if the answer is complex.
|
632 |
+
|
633 |
+
10. Remember to stay focused on the user's specific question while providing sufficient context for complete understanding.
|
634 |
+
"""
|
635 |
+
|
636 |
+
try:
|
637 |
+
logger.info(f"Generating response with OpenAI ({self.config.openai_model})")
|
638 |
+
|
639 |
+
start_time = datetime.now()
|
640 |
+
response = self.openai_client.chat.completions.create(
|
641 |
+
model=self.config.openai_model,
|
642 |
+
messages=[
|
643 |
+
{"role": "system", "content": system_prompt},
|
644 |
+
{"role": "user", "content": f"Context:\n{context}\n\nQuestion: {query}"}
|
645 |
+
],
|
646 |
+
temperature=self.config.temperature,
|
647 |
+
max_tokens=self.config.max_tokens,
|
648 |
)
|
649 |
|
650 |
+
generation_time = (datetime.now() - start_time).total_seconds()
|
651 |
+
response_text = response.choices[0].message.content
|
|
|
|
|
|
|
|
|
652 |
|
653 |
+
logger.info(f"Generated response with OpenAI in {generation_time:.2f} seconds")
|
654 |
+
return response_text
|
655 |
+
except Exception as e:
|
656 |
+
error_msg = f"Error generating response with OpenAI: {str(e)}"
|
657 |
+
logger.error(error_msg)
|
658 |
+
return f"I encountered an error while generating your response. Please try again or check your API key. Error details: {str(e)}"
|
659 |
+
|
660 |
+
def generate_response_gemini(self, query: str, context: str) -> str:
|
661 |
+
"""
|
662 |
+
Generate a response using Gemini with context.
|
663 |
+
|
664 |
+
Args:
|
665 |
+
query (str): User query
|
666 |
+
context (str): Formatted document context
|
667 |
+
|
668 |
+
Returns:
|
669 |
+
str: Generated response
|
670 |
+
"""
|
671 |
+
if not self.gemini_configured:
|
672 |
+
logger.warning("Gemini API key not configured for response generation")
|
673 |
+
return "Please configure a Google AI API key to use this feature. Enter your API key in the field and click 'Save API Key'."
|
674 |
+
|
675 |
+
# Improved Gemini prompt for more comprehensive and user-friendly responses
|
676 |
+
prompt = f"""
|
677 |
+
You are a knowledgeable and friendly research assistant who excels at providing clear, comprehensive, and well-structured responses. Your goal is to help users understand complex information from documents in an accessible way.
|
678 |
+
|
679 |
+
**Guidelines for Your Response:**
|
680 |
+
|
681 |
+
- Create a detailed, well-organized response of approximately 300-500 words that thoroughly addresses the user's question.
|
682 |
+
- Use ONLY information from the provided context documents.
|
683 |
+
- Structure your answer with clear paragraphs, and use headings, bullet points, or numbered lists when appropriate.
|
684 |
+
- Maintain a friendly, conversational tone that makes information accessible and engaging.
|
685 |
+
- When citing information, reference specific documents by number (e.g., "As mentioned in Document 2...").
|
686 |
+
- If the context doesn't contain enough information for a complete answer, acknowledge this limitation while providing what you can from the available context.
|
687 |
+
- If documents contain conflicting information, present both perspectives fairly.
|
688 |
+
- Conclude with a brief summary if the topic is complex.
|
689 |
+
|
690 |
+
**Context Documents:**
|
691 |
+
{context}
|
692 |
+
|
693 |
+
**User's Question:**
|
694 |
+
{query}
|
695 |
+
|
696 |
+
**Your Response:**
|
697 |
+
"""
|
698 |
+
|
699 |
+
try:
|
700 |
+
logger.info(f"Generating response with Gemini ({self.config.gemini_model})")
|
701 |
+
|
702 |
+
start_time = datetime.now()
|
703 |
+
model = genai.GenerativeModel(self.config.gemini_model)
|
704 |
+
|
705 |
+
generation_config = {
|
706 |
+
"temperature": self.config.temperature,
|
707 |
+
"max_output_tokens": self.config.max_tokens,
|
708 |
+
"top_p": 0.9,
|
709 |
+
"top_k": 40
|
710 |
+
}
|
711 |
+
|
712 |
+
response = model.generate_content(
|
713 |
+
prompt,
|
714 |
+
generation_config=generation_config
|
715 |
)
|
716 |
|
717 |
+
generation_time = (datetime.now() - start_time).total_seconds()
|
718 |
+
response_text = response.text
|
719 |
+
|
720 |
+
logger.info(f"Generated response with Gemini in {generation_time:.2f} seconds")
|
721 |
+
return response_text
|
722 |
+
except Exception as e:
|
723 |
+
error_msg = f"Error generating response with Gemini: {str(e)}"
|
724 |
+
logger.error(error_msg)
|
725 |
+
return f"I encountered an error while generating your response. Please try again or check your API key. Error details: {str(e)}"
|
726 |
+
|
727 |
+
def query_and_generate(self,
|
728 |
+
query: str,
|
729 |
+
n_results: int = 5,
|
730 |
+
model: str = "openai") -> Tuple[str, str]:
|
731 |
+
"""
|
732 |
+
Retrieve relevant documents and generate a response using the specified model.
|
733 |
+
|
734 |
+
Args:
|
735 |
+
query (str): User query
|
736 |
+
n_results (int): Number of documents to retrieve
|
737 |
+
model (str): Model provider to use ('openai' or 'gemini')
|
738 |
+
|
739 |
+
Returns:
|
740 |
+
Tuple[str, str]: (Generated response, Search results)
|
741 |
+
"""
|
742 |
+
if not query.strip():
|
743 |
+
logger.warning("Empty query received")
|
744 |
+
return "Please enter a question to get a response.", "No search performed."
|
745 |
+
|
746 |
+
logger.info(f"Processing query: '{query[:50]}...' with {model} model")
|
747 |
+
|
748 |
+
# Query vector store
|
749 |
+
documents = self.vector_store.query(query, n_results=n_results)
|
750 |
+
|
751 |
+
# Format search results (for logs and hidden UI component)
|
752 |
+
# We'll format this in a way that's more useful for reference but not shown in UI
|
753 |
+
formatted_results = []
|
754 |
+
for i, res in enumerate(documents):
|
755 |
+
metadata = res['metadata']
|
756 |
+
title = metadata.get('title', metadata.get('filename', 'Unknown'))
|
757 |
+
score = res['score']
|
758 |
+
|
759 |
+
# Only include a very brief preview for reference
|
760 |
+
preview = res['document'][:100] + '...' if len(res['document']) > 100 else res['document']
|
761 |
+
formatted_results.append(f"Document {i+1}: {title} (Relevance: {score:.2f})")
|
762 |
+
|
763 |
+
search_output_text = "\n".join(formatted_results) if formatted_results else "No relevant documents found."
|
764 |
+
|
765 |
+
if not documents:
|
766 |
+
logger.warning("No relevant documents found")
|
767 |
+
return "I couldn't find relevant information in the knowledge base to answer your question. Could you try rephrasing your question or ask about a different topic?", search_output_text
|
768 |
+
|
769 |
+
# Format context
|
770 |
+
context = self.format_context(documents)
|
771 |
+
|
772 |
+
# Generate response with the appropriate model
|
773 |
+
if model == "openai":
|
774 |
+
response = self.generate_response_openai(query, context)
|
775 |
+
elif model == "gemini":
|
776 |
+
response = self.generate_response_gemini(query, context)
|
777 |
+
else:
|
778 |
+
error_msg = f"Unknown model: {model}"
|
779 |
+
logger.error(error_msg)
|
780 |
+
return error_msg, search_output_text
|
781 |
+
|
782 |
+
return response, search_output_text
|
783 |
+
|
784 |
+
def get_db_stats(vector_store: VectorStoreManager) -> str:
|
785 |
+
"""
|
786 |
+
Function to get vector store statistics.
|
787 |
+
|
788 |
+
Args:
|
789 |
+
vector_store (VectorStoreManager): Vector store manager
|
790 |
+
|
791 |
+
Returns:
|
792 |
+
str: Formatted statistics string
|
793 |
+
"""
|
794 |
+
try:
|
795 |
+
stats = vector_store.get_statistics()
|
796 |
+
total_docs = stats.get('total_documents', 0)
|
797 |
+
|
798 |
+
stats_text = f"Documents in knowledge base: {total_docs}"
|
799 |
+
return stats_text
|
800 |
except Exception as e:
|
801 |
+
logger.error(f"Error getting statistics: {e}")
|
802 |
+
return "Error getting database statistics"
|
803 |
+
|
804 |
+
# Helper function for loading documents (can be expanded in future versions)
|
805 |
+
def load_document(file_path: str, chunk_size: int = 2000, chunk_overlap: int = 200) -> bool:
|
806 |
+
"""
|
807 |
+
Load a document into the vector store.
|
808 |
+
|
809 |
+
Args:
|
810 |
+
file_path (str): Path to the document
|
811 |
+
chunk_size (int): Size of chunks to split the document into
|
812 |
+
chunk_overlap (int): Overlap between chunks
|
813 |
+
|
814 |
+
Returns:
|
815 |
+
bool: True if successful, False otherwise
|
816 |
+
"""
|
817 |
+
try:
|
818 |
try:
|
819 |
logger.info(f"Loading document: {file_path}")
|
820 |
|