Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,774 +1,339 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
import json
|
6 |
-
from datetime import datetime
|
7 |
-
from typing import List, Dict, Any, Optional, Tuple, Union
|
8 |
-
import traceback
|
9 |
-
|
10 |
-
# Configure detailed logging with file output
|
11 |
-
LOG_DIR = "logs"
|
12 |
-
os.makedirs(LOG_DIR, exist_ok=True)
|
13 |
-
log_file = os.path.join(LOG_DIR, f"rag_system_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log")
|
14 |
-
|
15 |
-
# Set up root logger with both file and console handlers
|
16 |
-
logging.basicConfig(
|
17 |
-
level=logging.INFO,
|
18 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
19 |
-
handlers=[
|
20 |
-
logging.FileHandler(log_file),
|
21 |
-
logging.StreamHandler(sys.stdout)
|
22 |
-
]
|
23 |
-
)
|
24 |
-
logger = logging.getLogger("rag_system")
|
25 |
-
logger.info(f"Starting RAG system. Log file: {log_file}")
|
26 |
-
|
27 |
-
# Importing necessary libraries with error handling
|
28 |
-
try:
|
29 |
-
import torch
|
30 |
-
import numpy as np
|
31 |
-
from sentence_transformers import SentenceTransformer
|
32 |
-
import chromadb
|
33 |
-
from chromadb.utils import embedding_functions
|
34 |
-
import gradio as gr
|
35 |
-
from openai import OpenAI
|
36 |
-
import google.generativeai as genai
|
37 |
-
logger.info("All required libraries successfully imported")
|
38 |
-
except ImportError as e:
|
39 |
-
logger.critical(f"Failed to import required libraries: {e}")
|
40 |
-
print(f"ERROR: Missing required libraries. Please install with: pip install -r requirements.txt")
|
41 |
-
print(f"Specific error: {e}")
|
42 |
-
sys.exit(1)
|
43 |
-
|
44 |
-
# Version info for tracking
|
45 |
-
VERSION = "1.1.0"
|
46 |
-
logger.info(f"RAG System Version: {VERSION}")
|
47 |
-
|
48 |
-
class Config:
|
49 |
-
"""
|
50 |
-
Configuration for vector store and RAG system.
|
51 |
-
|
52 |
-
This class centralizes all configuration parameters for the application,
|
53 |
-
making it easier to modify settings and ensure consistency.
|
54 |
-
|
55 |
-
Attributes:
|
56 |
-
local_dir (str): Directory for ChromaDB persistence
|
57 |
-
embedding_model (str): Name of the embedding model to use
|
58 |
-
collection_name (str): Name of the ChromaDB collection
|
59 |
-
default_top_k (int): Default number of results to return
|
60 |
-
openai_model (str): Default OpenAI model to use
|
61 |
-
gemini_model (str): Default Gemini model to use
|
62 |
-
temperature (float): Temperature setting for LLM generation
|
63 |
-
max_tokens (int): Maximum tokens for LLM response
|
64 |
-
system_name (str): Name of the system for UI
|
65 |
-
context_limit (int): Maximum characters to include in context
|
66 |
-
"""
|
67 |
-
|
68 |
-
def __init__(self,
|
69 |
-
local_dir: str = "./chroma_db",
|
70 |
-
embedding_model: str = "all-MiniLM-L6-v2",
|
71 |
-
collection_name: str = "markdown_docs",
|
72 |
-
default_top_k: int = 8, # Increased from 5 to 8 for more context
|
73 |
-
openai_model: str = "gpt-4o-mini",
|
74 |
-
gemini_model: str = "gemini-1.5-flash",
|
75 |
-
temperature: float = 0.3,
|
76 |
-
max_tokens: int = 2000, # Increased from 1000 to 2000 for more comprehensive responses
|
77 |
-
system_name: str = "Document RAG System",
|
78 |
-
context_limit: int = 16000): # Increased context limit for more comprehensive context
|
79 |
-
self.local_dir = local_dir
|
80 |
-
self.embedding_model = embedding_model
|
81 |
-
self.collection_name = collection_name
|
82 |
-
self.default_top_k = default_top_k
|
83 |
-
self.openai_model = openai_model
|
84 |
-
self.gemini_model = gemini_model
|
85 |
-
self.temperature = temperature
|
86 |
-
self.max_tokens = max_tokens
|
87 |
-
self.system_name = system_name
|
88 |
-
self.context_limit = context_limit
|
89 |
-
|
90 |
-
# Create local directory if it doesn't exist
|
91 |
-
os.makedirs(local_dir, exist_ok=True)
|
92 |
-
|
93 |
-
logger.info(f"Initialized configuration: {self.__dict__}")
|
94 |
-
|
95 |
-
def to_dict(self) -> Dict[str, Any]:
|
96 |
-
"""Convert configuration to dictionary for serialization"""
|
97 |
-
return self.__dict__
|
98 |
-
|
99 |
-
@classmethod
|
100 |
-
def from_file(cls, config_path: str) -> 'Config':
|
101 |
-
"""Load configuration from JSON file"""
|
102 |
-
try:
|
103 |
-
with open(config_path, 'r') as f:
|
104 |
-
config_dict = json.load(f)
|
105 |
-
logger.info(f"Loaded configuration from {config_path}")
|
106 |
-
return cls(**config_dict)
|
107 |
-
except Exception as e:
|
108 |
-
logger.error(f"Failed to load configuration from {config_path}: {e}")
|
109 |
-
logger.info("Using default configuration")
|
110 |
-
return cls()
|
111 |
-
|
112 |
-
def save_to_file(self, config_path: str) -> bool:
|
113 |
-
"""Save configuration to JSON file"""
|
114 |
-
try:
|
115 |
-
with open(config_path, 'w') as f:
|
116 |
-
json.dump(self.to_dict(), f, indent=2)
|
117 |
-
logger.info(f"Saved configuration to {config_path}")
|
118 |
-
return True
|
119 |
-
except Exception as e:
|
120 |
-
logger.error(f"Failed to save configuration to {config_path}: {e}")
|
121 |
-
return False
|
122 |
-
|
123 |
-
class EmbeddingEngine:
|
124 |
-
"""
|
125 |
-
Handle embeddings with a lightweight model.
|
126 |
-
|
127 |
-
This class manages the embedding model used to convert text to vector
|
128 |
-
representations for semantic search.
|
129 |
-
|
130 |
-
Attributes:
|
131 |
-
model (SentenceTransformer): The loaded embedding model
|
132 |
-
model_name (str): Name of the successfully loaded model
|
133 |
-
vector_size (int): Dimension of the embedding vectors
|
134 |
-
device (str): Device used for inference ('cuda' or 'cpu')
|
135 |
-
"""
|
136 |
-
|
137 |
-
def __init__(self, model_name="all-MiniLM-L6-v2"):
|
138 |
-
"""
|
139 |
-
Initialize the embedding engine with the specified model.
|
140 |
-
|
141 |
-
Args:
|
142 |
-
model_name (str): Name of the embedding model to load
|
143 |
-
|
144 |
-
Raises:
|
145 |
-
SystemExit: If no embedding model could be loaded
|
146 |
-
"""
|
147 |
-
# Use GPU if available
|
148 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
149 |
-
logger.info(f"Using device for embeddings: {self.device}")
|
150 |
-
|
151 |
-
# Try multiple model options in order of preference
|
152 |
-
model_options = [
|
153 |
-
model_name,
|
154 |
-
"all-MiniLM-L6-v2", # Good balance of speed and quality
|
155 |
-
"paraphrase-MiniLM-L3-v2", # Faster but less accurate
|
156 |
-
"all-mpnet-base-v2" # Higher quality but larger model
|
157 |
-
]
|
158 |
-
|
159 |
-
self.model = None
|
160 |
-
|
161 |
-
# Try each model in order until one works
|
162 |
-
for model_option in model_options:
|
163 |
-
try:
|
164 |
-
logger.info(f"Attempting to load embedding model: {model_option}")
|
165 |
-
self.model = SentenceTransformer(model_option)
|
166 |
-
|
167 |
-
# Move model to device
|
168 |
-
self.model.to(self.device)
|
169 |
-
|
170 |
-
logger.info(f"Successfully loaded embedding model: {model_option}")
|
171 |
-
self.model_name = model_option
|
172 |
-
self.vector_size = self.model.get_sentence_embedding_dimension()
|
173 |
-
logger.info(f"Embedding vector size: {self.vector_size}")
|
174 |
-
break
|
175 |
-
|
176 |
-
except Exception as e:
|
177 |
-
logger.warning(f"Failed to load embedding model {model_option}: {str(e)}")
|
178 |
-
|
179 |
-
if self.model is None:
|
180 |
-
error_msg = "Failed to load any embedding model. Please check your internet connection or install models locally."
|
181 |
-
logger.critical(error_msg)
|
182 |
-
raise SystemExit(error_msg)
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
Returns:
|
192 |
-
np.ndarray: Array of embeddings
|
193 |
-
|
194 |
-
Raises:
|
195 |
-
ValueError: If the input is invalid
|
196 |
-
RuntimeError: If embedding fails
|
197 |
-
"""
|
198 |
-
if not texts:
|
199 |
-
raise ValueError("Cannot embed empty list of texts")
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
return embeddings
|
204 |
-
except Exception as e:
|
205 |
-
logger.error(f"Error generating embeddings: {e}")
|
206 |
-
raise RuntimeError(f"Failed to generate embeddings: {e}")
|
207 |
-
|
208 |
-
class VectorStoreManager:
|
209 |
-
"""
|
210 |
-
Manage Chroma vector store operations - upload, query, etc.
|
211 |
-
|
212 |
-
This class provides an interface to the ChromaDB vector database,
|
213 |
-
handling document storage, retrieval, and management.
|
214 |
-
|
215 |
-
Attributes:
|
216 |
-
config (Config): Configuration parameters
|
217 |
-
client (chromadb.PersistentClient): ChromaDB client
|
218 |
-
collection (chromadb.Collection): The active ChromaDB collection
|
219 |
-
embedding_engine (EmbeddingEngine): Engine for generating embeddings
|
220 |
-
"""
|
221 |
-
|
222 |
-
def __init__(self, config: Config):
|
223 |
-
"""
|
224 |
-
Initialize the vector store manager.
|
225 |
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
Raises:
|
230 |
-
SystemExit: If the vector store cannot be initialized
|
231 |
-
"""
|
232 |
-
self.config = config
|
233 |
-
|
234 |
-
# Initialize Chroma client (local persistence)
|
235 |
-
logger.info(f"Initializing Chroma at {config.local_dir}")
|
236 |
-
try:
|
237 |
-
self.client = chromadb.PersistentClient(path=config.local_dir)
|
238 |
-
logger.info("ChromaDB client initialized successfully")
|
239 |
-
except Exception as e:
|
240 |
-
error_msg = f"Failed to initialize ChromaDB client: {e}"
|
241 |
-
logger.critical(error_msg)
|
242 |
-
raise SystemExit(error_msg)
|
243 |
|
244 |
-
#
|
245 |
-
|
246 |
-
#
|
247 |
-
|
248 |
-
self.embedding_engine = EmbeddingEngine(config.embedding_model)
|
249 |
-
logger.info(f"Using embedding model: {self.embedding_engine.model_name}")
|
250 |
-
|
251 |
-
# Create embedding function
|
252 |
-
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
|
253 |
-
model_name=self.embedding_engine.model_name
|
254 |
-
)
|
255 |
|
256 |
-
#
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
else:
|
276 |
-
# Create new collection if none exist
|
277 |
-
self.collection = self.client.create_collection(
|
278 |
-
name=config.collection_name,
|
279 |
-
embedding_function=sentence_transformer_ef,
|
280 |
-
metadata={"hnsw:space": "cosine"}
|
281 |
-
)
|
282 |
-
logger.info(f"Created new collection: {config.collection_name}")
|
283 |
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
-
#
|
308 |
-
|
309 |
-
|
310 |
-
n_results=n_results,
|
311 |
-
include=["documents", "metadatas", "distances"]
|
312 |
-
)
|
313 |
|
314 |
-
#
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
})
|
324 |
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
return results
|
330 |
-
except Exception as e:
|
331 |
-
logger.error(f"Error querying collection: {e}")
|
332 |
-
logger.debug(traceback.format_exc())
|
333 |
-
return []
|
334 |
-
|
335 |
-
def add_document(self,
|
336 |
-
document: str,
|
337 |
-
doc_id: str,
|
338 |
-
metadata: Dict[str, Any]) -> bool:
|
339 |
-
"""
|
340 |
-
Add a document to the vector store.
|
341 |
-
|
342 |
-
Args:
|
343 |
-
document (str): The document text
|
344 |
-
doc_id (str): Unique identifier for the document
|
345 |
-
metadata (Dict[str, Any]): Metadata about the document
|
346 |
-
|
347 |
-
Returns:
|
348 |
-
bool: True if successful, False otherwise
|
349 |
-
"""
|
350 |
-
try:
|
351 |
-
logger.info(f"Adding document '{doc_id}' to vector store")
|
352 |
-
|
353 |
-
# Add the document to the collection
|
354 |
-
self.collection.add(
|
355 |
-
documents=[document],
|
356 |
-
ids=[doc_id],
|
357 |
-
metadatas=[metadata]
|
358 |
)
|
359 |
|
360 |
-
|
361 |
-
|
362 |
-
except Exception as e:
|
363 |
-
logger.error(f"Error adding document to collection: {e}")
|
364 |
-
return False
|
365 |
-
|
366 |
-
def delete_document(self, doc_id: str) -> bool:
|
367 |
-
"""
|
368 |
-
Delete a document from the vector store.
|
369 |
-
|
370 |
-
Args:
|
371 |
-
doc_id (str): ID of the document to delete
|
372 |
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
Returns:
|
390 |
-
Dict[str, Any]: Statistics about the vector store
|
391 |
-
"""
|
392 |
-
stats = {
|
393 |
-
'collection_name': self.config.collection_name,
|
394 |
-
'embedding_model': self.embedding_engine.model_name,
|
395 |
-
'embedding_dimensions': self.embedding_engine.vector_size,
|
396 |
-
'device': self.embedding_engine.device
|
397 |
-
}
|
398 |
-
|
399 |
-
try:
|
400 |
-
# Get collection count
|
401 |
-
collection_count = self.collection.count()
|
402 |
-
stats['total_documents'] = collection_count
|
403 |
|
404 |
-
#
|
405 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
try:
|
407 |
-
#
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
except Exception as e:
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
logger.error(f"Error getting statistics: {e}")
|
422 |
-
stats['error'] = str(e)
|
423 |
-
|
424 |
-
return stats
|
425 |
-
|
426 |
-
class RAGSystem:
|
427 |
-
"""
|
428 |
-
Retrieval-Augmented Generation with multiple LLM providers.
|
429 |
-
|
430 |
-
This class handles the RAG workflow: retrieval of relevant documents,
|
431 |
-
formatting context, and generating responses with different LLM providers.
|
432 |
-
|
433 |
-
Attributes:
|
434 |
-
vector_store (VectorStoreManager): Manager for vector store operations
|
435 |
-
openai_client (Optional[OpenAI]): OpenAI client
|
436 |
-
gemini_configured (bool): Whether Gemini API is configured
|
437 |
-
config (Config): Configuration parameters
|
438 |
-
"""
|
439 |
-
|
440 |
-
def __init__(self, vector_store: VectorStoreManager, config: Config):
|
441 |
-
"""
|
442 |
-
Initialize the RAG system.
|
443 |
-
|
444 |
-
Args:
|
445 |
-
vector_store (VectorStoreManager): Vector store manager
|
446 |
-
config (Config): Configuration parameters
|
447 |
-
"""
|
448 |
-
self.vector_store = vector_store
|
449 |
-
self.config = config
|
450 |
-
self.openai_client = None
|
451 |
-
self.gemini_configured = False
|
452 |
-
|
453 |
-
logger.info("Initialized RAG system")
|
454 |
-
|
455 |
-
def setup_openai(self, api_key: str) -> bool:
|
456 |
-
"""
|
457 |
-
Set up OpenAI client with API key.
|
458 |
-
|
459 |
-
Args:
|
460 |
-
api_key (str): OpenAI API key
|
461 |
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
if not api_key.strip():
|
466 |
-
logger.warning("Empty OpenAI API key provided")
|
467 |
-
return False
|
468 |
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
model=self.config.openai_model,
|
475 |
-
messages=[
|
476 |
-
{"role": "system", "content": "You are a helpful assistant."},
|
477 |
-
{"role": "user", "content": "Test connection"}
|
478 |
-
],
|
479 |
-
max_tokens=10
|
480 |
)
|
481 |
-
logger.info("OpenAI client configured successfully")
|
482 |
-
return True
|
483 |
-
except Exception as e:
|
484 |
-
logger.error(f"Error initializing OpenAI client: {e}")
|
485 |
-
self.openai_client = None
|
486 |
-
return False
|
487 |
-
|
488 |
-
def setup_gemini(self, api_key: str) -> bool:
|
489 |
-
"""
|
490 |
-
Set up Gemini with API key.
|
491 |
-
|
492 |
-
Args:
|
493 |
-
api_key (str): Google AI API key
|
494 |
-
|
495 |
-
Returns:
|
496 |
-
bool: True if successful, False otherwise
|
497 |
-
"""
|
498 |
-
if not api_key.strip():
|
499 |
-
logger.warning("Empty Gemini API key provided")
|
500 |
-
return False
|
501 |
-
|
502 |
-
try:
|
503 |
-
logger.info("Setting up Gemini client")
|
504 |
-
genai.configure(api_key=api_key)
|
505 |
-
|
506 |
-
# Test the API key with a simple request
|
507 |
-
model = genai.GenerativeModel(self.config.gemini_model)
|
508 |
-
response = model.generate_content("Test connection")
|
509 |
-
|
510 |
-
self.gemini_configured = True
|
511 |
-
logger.info("Gemini client configured successfully")
|
512 |
-
return True
|
513 |
-
except Exception as e:
|
514 |
-
logger.error(f"Error configuring Gemini: {e}")
|
515 |
-
self.gemini_configured = False
|
516 |
-
return False
|
517 |
-
|
518 |
-
def format_context(self, documents: List[Dict]) -> str:
|
519 |
-
"""
|
520 |
-
Format retrieved documents into context for the LLM.
|
521 |
-
|
522 |
-
Args:
|
523 |
-
documents (List[Dict]): List of retrieved documents
|
524 |
-
|
525 |
-
Returns:
|
526 |
-
str: Formatted context for the LLM
|
527 |
-
"""
|
528 |
-
if not documents:
|
529 |
-
logger.warning("No documents provided for context formatting")
|
530 |
-
return "No relevant documents found."
|
531 |
-
|
532 |
-
logger.info(f"Formatting {len(documents)} documents for context")
|
533 |
-
context_parts = []
|
534 |
-
|
535 |
-
for i, doc in enumerate(documents):
|
536 |
-
metadata = doc['metadata']
|
537 |
-
# Extract document metadata in a robust way
|
538 |
-
title = metadata.get('title', metadata.get('filename', 'Unknown document'))
|
539 |
-
|
540 |
-
# Format header with just essential metadata for cleaner context
|
541 |
-
header = f"Document {i+1} - {title}"
|
542 |
-
|
543 |
-
# For readability, limit length of context document (using config value)
|
544 |
-
doc_text = doc['document']
|
545 |
-
if len(doc_text) > (self.config.context_limit // len(documents)):
|
546 |
-
# Divide context limit among the documents
|
547 |
-
max_length = self.config.context_limit // len(documents)
|
548 |
-
doc_text = doc_text[:max_length] + "... [Document truncated for brevity]"
|
549 |
-
|
550 |
-
context_parts.append(f"{header}:\n{doc_text}\n")
|
551 |
-
|
552 |
-
full_context = "\n".join(context_parts)
|
553 |
-
logger.info(f"Created context with {len(full_context)} characters")
|
554 |
-
|
555 |
-
return full_context
|
556 |
-
|
557 |
-
def generate_response_openai(self, query: str, context: str) -> str:
|
558 |
-
"""
|
559 |
-
Generate a response using OpenAI model with context.
|
560 |
-
|
561 |
-
Args:
|
562 |
-
query (str): User query
|
563 |
-
context (str): Formatted document context
|
564 |
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
logger.warning("OpenAI API key not configured for response generation")
|
570 |
-
return "Please configure an OpenAI API key to use this feature. Enter your API key in the field and click 'Save API Key'."
|
571 |
-
|
572 |
-
# Improved system prompt for better, more comprehensive responses
|
573 |
-
system_prompt = """
|
574 |
-
You are an exceptionally helpful, clear, and friendly AI research assistant. Your goal is to provide comprehensive, well-structured, and insightful answers based on the provided document context.
|
575 |
-
|
576 |
-
Guidelines for your response:
|
577 |
-
|
578 |
-
1. USE ONLY the information contained in the provided context documents to form your answer. If the context doesn't contain enough information to provide a complete answer, acknowledge this limitation clearly.
|
579 |
-
|
580 |
-
2. Always provide well-structured, detailed responses between 300-500 words that thoroughly address the user's question.
|
581 |
-
|
582 |
-
3. Format your response with clear headings, bullet points, or numbered lists when appropriate to enhance readability.
|
583 |
-
|
584 |
-
4. Cite your sources by referring to the document numbers (e.g., "According to Document 1...") to support your claims.
|
585 |
-
|
586 |
-
5. Use a friendly, conversational, and supportive tone that makes complex information accessible.
|
587 |
-
|
588 |
-
6. If different documents offer conflicting information, acknowledge these differences and present both perspectives without bias.
|
589 |
-
|
590 |
-
7. When appropriate, organize information into logical categories or chronological order to improve clarity.
|
591 |
-
|
592 |
-
8. Use examples from the documents to illustrate key points when available.
|
593 |
-
|
594 |
-
9. Conclude with a brief summary of the main points if the answer is complex.
|
595 |
-
|
596 |
-
10. Remember to stay focused on the user's specific question while providing sufficient context for complete understanding.
|
597 |
-
"""
|
598 |
-
|
599 |
-
try:
|
600 |
-
logger.info(f"Generating response with OpenAI ({self.config.openai_model})")
|
601 |
-
|
602 |
-
start_time = datetime.now()
|
603 |
-
response = self.openai_client.chat.completions.create(
|
604 |
-
model=self.config.openai_model,
|
605 |
-
messages=[
|
606 |
-
{"role": "system", "content": system_prompt},
|
607 |
-
{"role": "user", "content": f"Context:\n{context}\n\nQuestion: {query}"}
|
608 |
-
],
|
609 |
-
temperature=self.config.temperature,
|
610 |
-
max_tokens=self.config.max_tokens,
|
611 |
)
|
612 |
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
except Exception as e:
|
619 |
-
error_msg = f"Error generating response with OpenAI: {str(e)}"
|
620 |
-
logger.error(error_msg)
|
621 |
-
return f"I encountered an error while generating your response. Please try again or check your API key. Error details: {str(e)}"
|
622 |
-
|
623 |
-
def generate_response_gemini(self, query: str, context: str) -> str:
|
624 |
-
"""
|
625 |
-
Generate a response using Gemini with context.
|
626 |
-
|
627 |
-
Args:
|
628 |
-
query (str): User query
|
629 |
-
context (str): Formatted document context
|
630 |
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
return "Please configure a Google AI API key to use this feature. Enter your API key in the field and click 'Save API Key'."
|
637 |
-
|
638 |
-
# Improved Gemini prompt for more comprehensive and user-friendly responses
|
639 |
-
prompt = f"""
|
640 |
-
You are a knowledgeable and friendly research assistant who excels at providing clear, comprehensive, and well-structured responses. Your goal is to help users understand complex information from documents in an accessible way.
|
641 |
-
|
642 |
-
**Guidelines for Your Response:**
|
643 |
-
|
644 |
-
- Create a detailed, well-organized response of approximately 300-500 words that thoroughly addresses the user's question.
|
645 |
-
- Use ONLY information from the provided context documents.
|
646 |
-
- Structure your answer with clear paragraphs, and use headings, bullet points, or numbered lists when appropriate.
|
647 |
-
- Maintain a friendly, conversational tone that makes information accessible and engaging.
|
648 |
-
- When citing information, reference specific documents by number (e.g., "As mentioned in Document 2...").
|
649 |
-
- If the context doesn't contain enough information for a complete answer, acknowledge this limitation while providing what you can from the available context.
|
650 |
-
- If documents contain conflicting information, present both perspectives fairly.
|
651 |
-
- Conclude with a brief summary if the topic is complex.
|
652 |
-
|
653 |
-
**Context Documents:**
|
654 |
-
{context}
|
655 |
-
|
656 |
-
**User's Question:**
|
657 |
-
{query}
|
658 |
-
|
659 |
-
**Your Response:**
|
660 |
-
"""
|
661 |
-
|
662 |
-
try:
|
663 |
-
logger.info(f"Generating response with Gemini ({self.config.gemini_model})")
|
664 |
|
665 |
-
|
666 |
-
|
|
|
|
|
|
|
|
|
667 |
|
668 |
-
|
669 |
-
|
670 |
-
"
|
671 |
-
"
|
672 |
-
"
|
673 |
-
|
674 |
|
675 |
-
|
676 |
-
|
677 |
-
|
|
|
|
|
|
|
678 |
)
|
679 |
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
model (str): Model provider to use ('openai' or 'gemini')
|
701 |
-
|
702 |
-
Returns:
|
703 |
-
Tuple[str, str]: (Generated response, Search results)
|
704 |
-
"""
|
705 |
-
if not query.strip():
|
706 |
-
logger.warning("Empty query received")
|
707 |
-
return "Please enter a question to get a response.", "No search performed."
|
708 |
|
709 |
-
|
|
|
|
|
710 |
|
711 |
-
|
712 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
713 |
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
for i, res in enumerate(documents):
|
718 |
-
metadata = res['metadata']
|
719 |
-
title = metadata.get('title', metadata.get('filename', 'Unknown'))
|
720 |
-
score = res['score']
|
721 |
-
|
722 |
-
# Only include a very brief preview for reference
|
723 |
-
preview = res['document'][:100] + '...' if len(res['document']) > 100 else res['document']
|
724 |
-
formatted_results.append(f"Document {i+1}: {title} (Relevance: {score:.2f})")
|
725 |
|
726 |
-
|
|
|
|
|
|
|
|
|
727 |
|
728 |
-
|
729 |
-
|
730 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
731 |
|
732 |
-
#
|
733 |
-
|
734 |
|
735 |
-
#
|
736 |
-
|
737 |
-
response = self.generate_response_openai(query, context)
|
738 |
-
elif model == "gemini":
|
739 |
-
response = self.generate_response_gemini(query, context)
|
740 |
-
else:
|
741 |
-
error_msg = f"Unknown model: {model}"
|
742 |
-
logger.error(error_msg)
|
743 |
-
return error_msg, search_output_text
|
744 |
|
745 |
-
|
746 |
-
|
747 |
-
def get_db_stats(vector_store: VectorStoreManager) -> str:
|
748 |
-
"""
|
749 |
-
Function to get vector store statistics.
|
750 |
|
751 |
-
Args:
|
752 |
-
vector_store (VectorStoreManager): Vector store manager
|
753 |
-
|
754 |
-
Returns:
|
755 |
-
str: Formatted statistics string
|
756 |
-
"""
|
757 |
-
try:
|
758 |
-
stats = vector_store.get_statistics()
|
759 |
-
total_docs = stats.get('total_documents', 0)
|
760 |
-
|
761 |
-
stats_text = f"Documents in knowledge base: {total_docs}"
|
762 |
-
return stats_text
|
763 |
except Exception as e:
|
764 |
-
logger.error(f"Error
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
# The error occurs because there's likely a `try` statement without a matching `except` or `finally`
|
769 |
-
# Here are the possible locations and fixes:
|
770 |
-
|
771 |
-
|
772 |
|
773 |
def main():
|
774 |
"""Main function to run the RAG application"""
|
@@ -1024,7 +589,7 @@ def main():
|
|
1024 |
fn=lambda q: query_and_search(q, num_results.value, model_choice.value, temperature_slider.value, max_tokens_slider.value),
|
1025 |
cache_examples=False,
|
1026 |
)
|
1027 |
-
|
1028 |
# Launch the interface with a nice theme
|
1029 |
app.launch(
|
1030 |
share=False, # Set to True to create a public link
|
@@ -1035,7 +600,45 @@ def main():
|
|
1035 |
favicon_path="favicon.ico" if os.path.exists("favicon.ico") else None,
|
1036 |
show_error=True
|
1037 |
)
|
|
|
1038 |
except Exception as e:
|
1039 |
logger.critical(f"Error starting application: {e}")
|
1040 |
print(f"Error starting application: {e}")
|
1041 |
-
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def main():
|
2 |
+
"""Main function to run the RAG application"""
|
3 |
+
# Path for configuration file
|
4 |
+
CONFIG_FILE_PATH = "rag_config.json"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
try:
|
7 |
+
# Try to load configuration from file, or use defaults
|
8 |
+
if os.path.exists(CONFIG_FILE_PATH):
|
9 |
+
config = Config.from_file(CONFIG_FILE_PATH)
|
10 |
+
else:
|
11 |
+
config = Config(
|
12 |
+
local_dir="./chroma_db", # Store Chroma files in dedicated directory
|
13 |
+
collection_name="markdown_docs"
|
14 |
+
)
|
15 |
+
# Save default configuration
|
16 |
+
config.save_to_file(CONFIG_FILE_PATH)
|
17 |
|
18 |
+
print(f"Starting Document Knowledge Assistant v{VERSION}")
|
19 |
+
print(f"Log file: {log_file}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Initialize vector store manager with existing collection
|
22 |
+
vector_store = VectorStoreManager(config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# Initialize RAG system without API keys initially
|
25 |
+
rag_system = RAGSystem(vector_store, config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# Create the Gradio interface with custom CSS
|
28 |
+
with gr.Blocks(title="Document Knowledge Assistant", css=custom_css) as app:
|
29 |
+
gr.Markdown(f"# Document Knowledge Assistant v{VERSION}")
|
30 |
+
gr.Markdown("Ask questions about your documents and get comprehensive AI-powered answers")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
# Main layout
|
33 |
+
with gr.Row():
|
34 |
+
# Left column for asking questions
|
35 |
+
with gr.Column(scale=3):
|
36 |
+
with gr.Box():
|
37 |
+
gr.Markdown("### Ask Your Question")
|
38 |
+
query_input = gr.Textbox(
|
39 |
+
label="",
|
40 |
+
placeholder="What would you like to know about your documents?",
|
41 |
+
lines=3
|
42 |
+
)
|
43 |
+
|
44 |
+
with gr.Row():
|
45 |
+
query_button = gr.Button("Ask Question", variant="primary", scale=3)
|
46 |
+
clear_button = gr.Button("Clear", variant="secondary", scale=1)
|
47 |
+
|
48 |
+
with gr.Box():
|
49 |
+
gr.Markdown("### Answer")
|
50 |
+
response_output = gr.Markdown()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
# Right column for settings
|
53 |
+
with gr.Column(scale=1):
|
54 |
+
# API Keys and model selection
|
55 |
+
with gr.Accordion("AI Model Settings", open=True):
|
56 |
+
gr.Markdown("### AI Configuration")
|
57 |
+
model_choice = gr.Radio(
|
58 |
+
choices=["openai", "gemini"],
|
59 |
+
value="openai",
|
60 |
+
label="AI Provider",
|
61 |
+
info=f"Select your preferred AI model"
|
62 |
+
)
|
63 |
+
|
64 |
+
api_key_input = gr.Textbox(
|
65 |
+
label="API Key",
|
66 |
+
placeholder="Enter your API key here...",
|
67 |
+
type="password",
|
68 |
+
info="Your key is not stored between sessions"
|
69 |
+
)
|
70 |
+
|
71 |
+
save_key_button = gr.Button("Save API Key", variant="primary")
|
72 |
+
api_status = gr.Markdown("")
|
73 |
+
|
74 |
+
# Advanced search controls
|
75 |
+
with gr.Accordion("Advanced Settings", open=False):
|
76 |
+
gr.Markdown("### Search & Response Settings")
|
77 |
+
num_results = gr.Slider(
|
78 |
+
minimum=3,
|
79 |
+
maximum=15,
|
80 |
+
value=config.default_top_k,
|
81 |
+
step=1,
|
82 |
+
label="Documents to search",
|
83 |
+
info="Higher values provide more context"
|
84 |
+
)
|
85 |
+
|
86 |
+
temperature_slider = gr.Slider(
|
87 |
+
minimum=0.0,
|
88 |
+
maximum=1.0,
|
89 |
+
value=config.temperature,
|
90 |
+
step=0.05,
|
91 |
+
label="Creativity",
|
92 |
+
info="Lower = more factual, Higher = more creative"
|
93 |
+
)
|
94 |
+
|
95 |
+
max_tokens_slider = gr.Slider(
|
96 |
+
minimum=500,
|
97 |
+
maximum=4000,
|
98 |
+
value=config.max_tokens,
|
99 |
+
step=100,
|
100 |
+
label="Response Length",
|
101 |
+
info="Maximum words in response"
|
102 |
+
)
|
103 |
+
|
104 |
+
# Database stats - simplified
|
105 |
+
with gr.Accordion("System Info", open=False):
|
106 |
+
stats_display = gr.Markdown(get_db_stats(vector_store))
|
107 |
+
|
108 |
+
gr.Markdown(f"""
|
109 |
+
**System Details:**
|
110 |
+
- Version: {VERSION}
|
111 |
+
- Embedding: {vector_store.embedding_engine.model_name}
|
112 |
+
- Device: {vector_store.embedding_engine.device}
|
113 |
+
""")
|
114 |
+
refresh_button = gr.Button("Refresh", variant="secondary", size="sm")
|
115 |
|
116 |
+
# Hidden element for search results (not visible to user)
|
117 |
+
with gr.Accordion("Debug Information", open=False, visible=False):
|
118 |
+
search_output = gr.Markdown()
|
|
|
|
|
|
|
119 |
|
120 |
+
# Query history at the bottom (optional section)
|
121 |
+
with gr.Accordion("Recent Questions", open=False):
|
122 |
+
history_list = gr.Dataframe(
|
123 |
+
headers=["Time", "Question", "Model"],
|
124 |
+
datatype=["str", "str", "str"],
|
125 |
+
row_count=5,
|
126 |
+
col_count=(3, "fixed"),
|
127 |
+
interactive=False
|
128 |
+
)
|
|
|
129 |
|
130 |
+
# Footer
|
131 |
+
gr.Markdown(
|
132 |
+
"""<div class="footer">Document Knowledge Assistant helps you get insights from your documents using AI.
|
133 |
+
Powered by Retrieval Augmented Generation.</div>"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
)
|
135 |
|
136 |
+
# Query history storage
|
137 |
+
query_history = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
+
# Function to update API key based on selected model
|
140 |
+
def update_api_key(api_key, model):
|
141 |
+
if not api_key.strip():
|
142 |
+
return "❌ API key cannot be empty"
|
143 |
+
|
144 |
+
if model == "openai":
|
145 |
+
success = rag_system.setup_openai(api_key)
|
146 |
+
model_name = f"OpenAI {config.openai_model}"
|
147 |
+
else:
|
148 |
+
success = rag_system.setup_gemini(api_key)
|
149 |
+
model_name = f"Google {config.gemini_model}"
|
150 |
+
|
151 |
+
if success:
|
152 |
+
return f"✅ {model_name} connected successfully"
|
153 |
+
else:
|
154 |
+
return f"❌ Connection failed. Please check your API key and try again."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
+
# Query function that returns both response and search results
|
157 |
+
def query_and_search(query, n_results, model, temperature, max_tokens):
|
158 |
+
# Update configuration with current UI values
|
159 |
+
config.temperature = float(temperature)
|
160 |
+
config.max_tokens = int(max_tokens)
|
161 |
+
|
162 |
+
start_time = datetime.now()
|
163 |
+
|
164 |
+
if not query.strip():
|
165 |
+
return "Please enter a question to get an answer.", "", query_history[-5:] if query_history else []
|
166 |
+
|
167 |
try:
|
168 |
+
# Verify that API keys are configured
|
169 |
+
if (model == "openai" and rag_system.openai_client is None) or \
|
170 |
+
(model == "gemini" and not rag_system.gemini_configured):
|
171 |
+
return "Please configure your API key first. Enter your API key in the settings panel and click 'Save API Key'.", "", query_history[-5:] if query_history else []
|
172 |
+
|
173 |
+
# Call the RAG system's query and generate function
|
174 |
+
response, search_output_text = rag_system.query_and_generate(
|
175 |
+
query=query,
|
176 |
+
n_results=int(n_results),
|
177 |
+
model=model
|
178 |
+
)
|
179 |
+
|
180 |
+
# Add to history
|
181 |
+
timestamp = datetime.now().strftime("%H:%M")
|
182 |
+
query_history.append([timestamp, query, model])
|
183 |
+
|
184 |
+
# Keep only the last 100 queries
|
185 |
+
if len(query_history) > 100:
|
186 |
+
query_history.pop(0)
|
187 |
+
|
188 |
+
# Update the history display with the most recent entries (reverse chronological)
|
189 |
+
recent_history = list(reversed(query_history[-5:])) if len(query_history) >= 5 else list(reversed(query_history))
|
190 |
+
|
191 |
+
# Calculate elapsed time
|
192 |
+
elapsed_time = (datetime.now() - start_time).total_seconds()
|
193 |
+
|
194 |
+
# Add subtle timing information to the response
|
195 |
+
response_with_timing = f"{response}\n\n<small>Answered in {elapsed_time:.1f}s</small>"
|
196 |
+
|
197 |
+
return response_with_timing, search_output_text, recent_history
|
198 |
+
|
199 |
except Exception as e:
|
200 |
+
error_msg = f"Error processing query: {str(e)}"
|
201 |
+
logger.error(error_msg)
|
202 |
+
logger.error(traceback.format_exc())
|
203 |
+
return "I encountered an error while processing your question. Please try again or check your API key settings.", "", query_history[-5:] if query_history else []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
+
# Function to clear the input and results
|
206 |
+
def clear_inputs():
|
207 |
+
return "", "", "", query_history[-5:] if query_history else []
|
|
|
|
|
|
|
208 |
|
209 |
+
# Set up events
|
210 |
+
save_key_button.click(
|
211 |
+
fn=update_api_key,
|
212 |
+
inputs=[api_key_input, model_choice],
|
213 |
+
outputs=api_status
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
+
query_button.click(
|
217 |
+
fn=query_and_search,
|
218 |
+
inputs=[query_input, num_results, model_choice, temperature_slider, max_tokens_slider],
|
219 |
+
outputs=[response_output, search_output, history_list]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
)
|
221 |
|
222 |
+
refresh_button.click(
|
223 |
+
fn=lambda: get_db_stats(vector_store),
|
224 |
+
inputs=None,
|
225 |
+
outputs=stats_display
|
226 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
+
clear_button.click(
|
229 |
+
fn=clear_inputs,
|
230 |
+
inputs=None,
|
231 |
+
outputs=[query_input, response_output, search_output, history_list]
|
232 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
+
# Handle Enter key in query input
|
235 |
+
query_input.submit(
|
236 |
+
fn=query_and_search,
|
237 |
+
inputs=[query_input, num_results, model_choice, temperature_slider, max_tokens_slider],
|
238 |
+
outputs=[response_output, search_output, history_list]
|
239 |
+
)
|
240 |
|
241 |
+
# Auto-fill examples
|
242 |
+
examples = [
|
243 |
+
["What are the main features of this application?"],
|
244 |
+
["How does the retrieval augmented generation work?"],
|
245 |
+
["Can you explain the embedding models used in this system?"],
|
246 |
+
]
|
247 |
|
248 |
+
gr.Examples(
|
249 |
+
examples=examples,
|
250 |
+
inputs=query_input,
|
251 |
+
outputs=[response_output, search_output, history_list],
|
252 |
+
fn=lambda q: query_and_search(q, num_results.value, model_choice.value, temperature_slider.value, max_tokens_slider.value),
|
253 |
+
cache_examples=False,
|
254 |
)
|
255 |
|
256 |
+
# Launch the interface with a nice theme
|
257 |
+
app.launch(
|
258 |
+
share=False, # Set to True to create a public link
|
259 |
+
server_name="0.0.0.0", # Listen on all interfaces
|
260 |
+
server_port=7860, # Default Gradio port
|
261 |
+
debug=False, # Set to True during development
|
262 |
+
auth=None, # Add (username, password) tuple for basic auth
|
263 |
+
favicon_path="favicon.ico" if os.path.exists("favicon.ico") else None,
|
264 |
+
show_error=True
|
265 |
+
)
|
266 |
+
except Exception as e:
|
267 |
+
logger.critical(f"Error starting application: {e}")
|
268 |
+
print(f"Error starting application: {e}")
|
269 |
+
sys.exit(1)
|
270 |
+
try:
|
271 |
+
logger.info(f"Loading document: {file_path}")
|
272 |
|
273 |
+
# Initialize components
|
274 |
+
config = Config()
|
275 |
+
vector_store = VectorStoreManager(config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
+
# Read the file with different encodings if needed
|
278 |
+
content = None
|
279 |
+
encodings = ['utf-8', 'latin-1', 'cp1252']
|
280 |
|
281 |
+
for encoding in encodings:
|
282 |
+
try:
|
283 |
+
with open(file_path, 'r', encoding=encoding) as f:
|
284 |
+
content = f.read()
|
285 |
+
logger.info(f"Successfully read file with {encoding} encoding")
|
286 |
+
break
|
287 |
+
except UnicodeDecodeError:
|
288 |
+
logger.warning(f"Failed to read with {encoding} encoding, trying next...")
|
289 |
|
290 |
+
if content is None:
|
291 |
+
logger.error(f"Failed to read file with any encoding: {file_path}")
|
292 |
+
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
|
294 |
+
# Extract metadata
|
295 |
+
file_name = os.path.basename(file_path)
|
296 |
+
file_ext = os.path.splitext(file_name)[1].lower()
|
297 |
+
file_size = os.path.getsize(file_path)
|
298 |
+
file_mtime = os.path.getmtime(file_path)
|
299 |
|
300 |
+
# Try to extract title from content for better reference
|
301 |
+
title = file_name
|
302 |
+
try:
|
303 |
+
# Simple heuristic to find a title (first non-empty line)
|
304 |
+
lines = content.split('\n')
|
305 |
+
for line in lines:
|
306 |
+
line = line.strip()
|
307 |
+
if line and len(line) < 100: # Reasonable title length
|
308 |
+
title = line
|
309 |
+
break
|
310 |
+
except:
|
311 |
+
pass
|
312 |
+
|
313 |
+
# Create metadata
|
314 |
+
metadata = {
|
315 |
+
'filename': file_name,
|
316 |
+
'title': title,
|
317 |
+
'path': file_path,
|
318 |
+
'extension': file_ext,
|
319 |
+
'size': file_size,
|
320 |
+
'modified': datetime.fromtimestamp(file_mtime).isoformat(),
|
321 |
+
'created_at': datetime.now().isoformat()
|
322 |
+
}
|
323 |
|
324 |
+
# Generate a unique ID for the document
|
325 |
+
doc_id = f"{file_name}_{hash(content)}"
|
326 |
|
327 |
+
# Add to vector store
|
328 |
+
success = vector_store.add_document(content, doc_id, metadata)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
+
logger.info(f"Document loaded successfully: {file_path}" if success else f"Failed to load document: {file_path}")
|
331 |
+
return success
|
|
|
|
|
|
|
332 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
except Exception as e:
|
334 |
+
logger.error(f"Error loading document {file_path}: {e}")
|
335 |
+
logger.error(traceback.format_exc())
|
336 |
+
return False
|
|
|
|
|
|
|
|
|
|
|
337 |
|
338 |
def main():
|
339 |
"""Main function to run the RAG application"""
|
|
|
589 |
fn=lambda q: query_and_search(q, num_results.value, model_choice.value, temperature_slider.value, max_tokens_slider.value),
|
590 |
cache_examples=False,
|
591 |
)
|
592 |
+
|
593 |
# Launch the interface with a nice theme
|
594 |
app.launch(
|
595 |
share=False, # Set to True to create a public link
|
|
|
600 |
favicon_path="favicon.ico" if os.path.exists("favicon.ico") else None,
|
601 |
show_error=True
|
602 |
)
|
603 |
+
|
604 |
except Exception as e:
|
605 |
logger.critical(f"Error starting application: {e}")
|
606 |
print(f"Error starting application: {e}")
|
607 |
+
sys.exit(1)
|
608 |
+
|
609 |
+
if __name__ == "__main__":
|
610 |
+
# Parse command line arguments
|
611 |
+
if len(sys.argv) > 1:
|
612 |
+
if sys.argv[1] == "--load" and len(sys.argv) > 2:
|
613 |
+
# Load documents mode
|
614 |
+
print(f"Document Knowledge Assistant v{VERSION}")
|
615 |
+
print(f"Loading documents into knowledge base...")
|
616 |
+
|
617 |
+
success_count = 0
|
618 |
+
failed_count = 0
|
619 |
+
|
620 |
+
for file_path in sys.argv[2:]:
|
621 |
+
if os.path.exists(file_path):
|
622 |
+
success = load_document(file_path)
|
623 |
+
if success:
|
624 |
+
success_count += 1
|
625 |
+
print(f"✅ Successfully loaded: {file_path}")
|
626 |
+
else:
|
627 |
+
failed_count += 1
|
628 |
+
print(f"❌ Failed to load: {file_path}")
|
629 |
+
else:
|
630 |
+
failed_count += 1
|
631 |
+
print(f"❌ File not found: {file_path}")
|
632 |
+
|
633 |
+
print(f"\nLoading complete: {success_count} documents loaded, {failed_count} failed")
|
634 |
+
sys.exit(0)
|
635 |
+
elif sys.argv[1] == "--help":
|
636 |
+
print(f"Document Knowledge Assistant v{VERSION}")
|
637 |
+
print("Usage:")
|
638 |
+
print(" python rag_system.py # Start the web UI")
|
639 |
+
print(" python rag_system.py --load file1 file2 # Load documents into the knowledge base")
|
640 |
+
print(" python rag_system.py --help # Show this help message")
|
641 |
+
sys.exit(0)
|
642 |
+
|
643 |
+
# Start the web UI
|
644 |
+
main()
|