import gradio as gr | |
from fastai.vision.all import * | |
import skimage | |
learn = load_learner('models/panda-model-1.pth') | |
labels = learn.dls.vocab | |
def predict(img): | |
img = get_crops(PILImage.create(img)) | |
pred,pred_idx,probs = learn.predict(img) | |
return {labels[i]: float(probs[i]) for i in range(len(labels))} | |
title = "Prostate cANcer graDe Assessment model" | |
description = "A model to predict the ISUP grade for prostate cancer based on whole-slide images of digitized H&E-stained biopsies." | |
# article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>" | |
examples = ['test.jpg'] | |
interpretation='default' | |
enable_queue=True | |
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(224, 224)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch() | |