import gradio as gr from fastai.vision.all import * import skimage learn = load_learner('models/panda-model-1.pth') labels = learn.dls.vocab def predict(img): img = get_crops(PILImage.create(img)) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Prostate cANcer graDe Assessment model" description = "A model to predict the ISUP grade for prostate cancer based on whole-slide images of digitized H&E-stained biopsies." # article="
" examples = ['test.jpg'] interpretation='default' enable_queue=True gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(224, 224)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()