Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
class FPN(nn.Module): | |
def __init__(self, backbone_out_channels, **kwargs): | |
""" | |
:param backbone_out_channels: 基础网络输出的维度 | |
:param kwargs: | |
""" | |
super().__init__() | |
# result_num = kwargs.get('result_num', 6) | |
inplace = True | |
conv_out = 256 | |
# reduce layers | |
self.reduce_conv_c2 = nn.Sequential( | |
nn.Conv2d(backbone_out_channels[0], conv_out, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm2d(conv_out), | |
nn.ReLU(inplace=inplace) | |
) | |
self.reduce_conv_c3 = nn.Sequential( | |
nn.Conv2d(backbone_out_channels[1], conv_out, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm2d(conv_out), | |
nn.ReLU(inplace=inplace) | |
) | |
self.reduce_conv_c4 = nn.Sequential( | |
nn.Conv2d(backbone_out_channels[2], conv_out, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm2d(conv_out), | |
nn.ReLU(inplace=inplace) | |
) | |
self.reduce_conv_c5 = nn.Sequential( | |
nn.Conv2d(backbone_out_channels[3], conv_out, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm2d(conv_out), | |
nn.ReLU(inplace=inplace) | |
) | |
# Smooth layers | |
self.smooth_p4 = nn.Sequential( | |
nn.Conv2d(conv_out, conv_out, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm2d(conv_out), | |
nn.ReLU(inplace=inplace) | |
) | |
self.smooth_p3 = nn.Sequential( | |
nn.Conv2d(conv_out, conv_out, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm2d(conv_out), | |
nn.ReLU(inplace=inplace) | |
) | |
self.smooth_p2 = nn.Sequential( | |
nn.Conv2d(conv_out, conv_out, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm2d(conv_out), | |
nn.ReLU(inplace=inplace) | |
) | |
self.conv = nn.Sequential( | |
nn.Conv2d(conv_out * 4, conv_out, kernel_size=3, padding=1, stride=1), | |
nn.BatchNorm2d(conv_out), | |
nn.ReLU(inplace=inplace) | |
) | |
# self.out_conv = nn.Conv2d(conv_out, result_num, kernel_size=1, stride=1) | |
self.pred_conv = nn.Sequential( | |
nn.Conv2d(conv_out, 2, kernel_size=1, stride=1, padding=0), | |
nn.Sigmoid() | |
) | |
def forward(self, x): | |
c2, c3, c4, c5 = x | |
# Top-down | |
p5 = self.reduce_conv_c5(c5) | |
p4 = self._upsample_add(p5, self.reduce_conv_c4(c4)) | |
p4 = self.smooth_p4(p4) | |
p3 = self._upsample_add(p4, self.reduce_conv_c3(c3)) | |
p3 = self.smooth_p3(p3) | |
p2 = self._upsample_add(p3, self.reduce_conv_c2(c2)) | |
p2 = self.smooth_p2(p2) | |
x = self._upsample_cat(p2, p3, p4, p5) | |
x = self.conv(x) | |
# x = self.out_conv(x) | |
x = self.pred_conv(x) | |
return x | |
def _upsample_add(self, x, y): | |
return F.interpolate(x, size=y.size()[2:], mode='bilinear', align_corners=True) + y | |
def _upsample_cat(self, p2, p3, p4, p5): | |
h, w = p2.size()[2:] | |
p3 = F.interpolate(p3, size=(h, w), mode='bilinear', align_corners=True) | |
p4 = F.interpolate(p4, size=(h, w), mode='bilinear', align_corners=True) | |
p5 = F.interpolate(p5, size=(h, w), mode='bilinear', align_corners=True) | |
return torch.cat([p2, p3, p4, p5], dim=1) | |
class FPEM_FFM(nn.Module): | |
def __init__(self, backbone_out_channels, **kwargs): | |
""" | |
PANnet | |
:param backbone_out_channels: 基础网络输出的维度 | |
""" | |
super().__init__() | |
fpem_repeat = kwargs.get('fpem_repeat', 2) | |
conv_out = 128 | |
# reduce layers | |
self.reduce_conv_c2 = nn.Sequential( | |
nn.Conv2d(in_channels=backbone_out_channels[0], out_channels=conv_out, kernel_size=1), | |
nn.BatchNorm2d(conv_out), | |
nn.ReLU() | |
) | |
self.reduce_conv_c3 = nn.Sequential( | |
nn.Conv2d(in_channels=backbone_out_channels[1], out_channels=conv_out, kernel_size=1), | |
nn.BatchNorm2d(conv_out), | |
nn.ReLU() | |
) | |
self.reduce_conv_c4 = nn.Sequential( | |
nn.Conv2d(in_channels=backbone_out_channels[2], out_channels=conv_out, kernel_size=1), | |
nn.BatchNorm2d(conv_out), | |
nn.ReLU() | |
) | |
self.reduce_conv_c5 = nn.Sequential( | |
nn.Conv2d(in_channels=backbone_out_channels[3], out_channels=conv_out, kernel_size=1), | |
nn.BatchNorm2d(conv_out), | |
nn.ReLU() | |
) | |
self.fpems = nn.ModuleList() | |
for i in range(fpem_repeat): | |
self.fpems.append(FPEM(conv_out)) | |
self.out_conv = nn.Conv2d(in_channels=conv_out * 4, out_channels=6, kernel_size=1) | |
def forward(self, x): | |
c2, c3, c4, c5 = x | |
# reduce channel | |
c2 = self.reduce_conv_c2(c2) | |
c3 = self.reduce_conv_c3(c3) | |
c4 = self.reduce_conv_c4(c4) | |
c5 = self.reduce_conv_c5(c5) | |
# FPEM | |
for i, fpem in enumerate(self.fpems): | |
c2, c3, c4, c5 = fpem(c2, c3, c4, c5) | |
if i == 0: | |
c2_ffm = c2 | |
c3_ffm = c3 | |
c4_ffm = c4 | |
c5_ffm = c5 | |
else: | |
c2_ffm += c2 | |
c3_ffm += c3 | |
c4_ffm += c4 | |
c5_ffm += c5 | |
# FFM | |
c5 = F.interpolate(c5_ffm, c2_ffm.size()[-2:], mode='bilinear') | |
c4 = F.interpolate(c4_ffm, c2_ffm.size()[-2:], mode='bilinear') | |
c3 = F.interpolate(c3_ffm, c2_ffm.size()[-2:], mode='bilinear') | |
Fy = torch.cat([c2_ffm, c3, c4, c5], dim=1) | |
y = self.out_conv(Fy) | |
return y | |
class FPEM(nn.Module): | |
def __init__(self, in_channels=128): | |
super().__init__() | |
self.up_add1 = SeparableConv2d(in_channels, in_channels, 1) | |
self.up_add2 = SeparableConv2d(in_channels, in_channels, 1) | |
self.up_add3 = SeparableConv2d(in_channels, in_channels, 1) | |
self.down_add1 = SeparableConv2d(in_channels, in_channels, 2) | |
self.down_add2 = SeparableConv2d(in_channels, in_channels, 2) | |
self.down_add3 = SeparableConv2d(in_channels, in_channels, 2) | |
def forward(self, c2, c3, c4, c5): | |
# up阶段 | |
c4 = self.up_add1(self._upsample_add(c5, c4)) | |
c3 = self.up_add2(self._upsample_add(c4, c3)) | |
c2 = self.up_add3(self._upsample_add(c3, c2)) | |
# down 阶段 | |
c3 = self.down_add1(self._upsample_add(c3, c2)) | |
c4 = self.down_add2(self._upsample_add(c4, c3)) | |
c5 = self.down_add3(self._upsample_add(c5, c4)) | |
return c2, c3, c4, c5 | |
def _upsample_add(self, x, y): | |
return F.interpolate(x, size=y.size()[2:], mode='bilinear') + y | |
class SeparableConv2d(nn.Module): | |
def __init__(self, in_channels, out_channels, stride=1): | |
super(SeparableConv2d, self).__init__() | |
self.depthwise_conv = nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=3, padding=1, | |
stride=stride, groups=in_channels) | |
self.pointwise_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1) | |
self.bn = nn.BatchNorm2d(out_channels) | |
self.relu = nn.ReLU() | |
def forward(self, x): | |
x = self.depthwise_conv(x) | |
x = self.pointwise_conv(x) | |
x = self.bn(x) | |
x = self.relu(x) | |
return x | |