File size: 7,537 Bytes
0742dfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# -*- coding: utf-8 -*-

import torch
from torch import nn
import torch.nn.functional as F


class FPN(nn.Module):
    def __init__(self, backbone_out_channels, **kwargs):
        """
        :param backbone_out_channels: 基础网络输出的维度
        :param kwargs:
        """
        super().__init__()
        # result_num = kwargs.get('result_num', 6)
        inplace = True
        conv_out = 256
        # reduce layers
        self.reduce_conv_c2 = nn.Sequential(
            nn.Conv2d(backbone_out_channels[0], conv_out, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(conv_out),
            nn.ReLU(inplace=inplace)
        )
        self.reduce_conv_c3 = nn.Sequential(
            nn.Conv2d(backbone_out_channels[1], conv_out, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(conv_out),
            nn.ReLU(inplace=inplace)
        )
        self.reduce_conv_c4 = nn.Sequential(
            nn.Conv2d(backbone_out_channels[2], conv_out, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(conv_out),
            nn.ReLU(inplace=inplace)
        )

        self.reduce_conv_c5 = nn.Sequential(
            nn.Conv2d(backbone_out_channels[3], conv_out, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(conv_out),
            nn.ReLU(inplace=inplace)
        )
        # Smooth layers
        self.smooth_p4 = nn.Sequential(
            nn.Conv2d(conv_out, conv_out, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(conv_out),
            nn.ReLU(inplace=inplace)
        )
        self.smooth_p3 = nn.Sequential(
            nn.Conv2d(conv_out, conv_out, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(conv_out),
            nn.ReLU(inplace=inplace)
        )
        self.smooth_p2 = nn.Sequential(
            nn.Conv2d(conv_out, conv_out, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(conv_out),
            nn.ReLU(inplace=inplace)
        )

        self.conv = nn.Sequential(
            nn.Conv2d(conv_out * 4, conv_out, kernel_size=3, padding=1, stride=1),
            nn.BatchNorm2d(conv_out),
            nn.ReLU(inplace=inplace)
        )
        # self.out_conv = nn.Conv2d(conv_out, result_num, kernel_size=1, stride=1)
        
        self.pred_conv = nn.Sequential(
            nn.Conv2d(conv_out, 2, kernel_size=1, stride=1, padding=0),
            nn.Sigmoid()
        )        

    def forward(self, x):
        c2, c3, c4, c5 = x
        # Top-down
        p5 = self.reduce_conv_c5(c5)
        p4 = self._upsample_add(p5, self.reduce_conv_c4(c4))
        p4 = self.smooth_p4(p4)
        p3 = self._upsample_add(p4, self.reduce_conv_c3(c3))
        p3 = self.smooth_p3(p3)
        p2 = self._upsample_add(p3, self.reduce_conv_c2(c2))
        p2 = self.smooth_p2(p2)

        x = self._upsample_cat(p2, p3, p4, p5)
        x = self.conv(x)
        
        # x = self.out_conv(x)
        
        x = self.pred_conv(x)
        return x

    def _upsample_add(self, x, y):
        return F.interpolate(x, size=y.size()[2:], mode='bilinear', align_corners=True) + y

    def _upsample_cat(self, p2, p3, p4, p5):
        h, w = p2.size()[2:]
        p3 = F.interpolate(p3, size=(h, w), mode='bilinear', align_corners=True)
        p4 = F.interpolate(p4, size=(h, w), mode='bilinear', align_corners=True)
        p5 = F.interpolate(p5, size=(h, w), mode='bilinear', align_corners=True)
        return torch.cat([p2, p3, p4, p5], dim=1)


class FPEM_FFM(nn.Module):
    def __init__(self, backbone_out_channels, **kwargs):
        """
        PANnet
        :param backbone_out_channels: 基础网络输出的维度
        """
        super().__init__()
        fpem_repeat = kwargs.get('fpem_repeat', 2)
        conv_out = 128
        # reduce layers
        self.reduce_conv_c2 = nn.Sequential(
            nn.Conv2d(in_channels=backbone_out_channels[0], out_channels=conv_out, kernel_size=1),
            nn.BatchNorm2d(conv_out),
            nn.ReLU()
        )
        self.reduce_conv_c3 = nn.Sequential(
            nn.Conv2d(in_channels=backbone_out_channels[1], out_channels=conv_out, kernel_size=1),
            nn.BatchNorm2d(conv_out),
            nn.ReLU()
        )
        self.reduce_conv_c4 = nn.Sequential(
            nn.Conv2d(in_channels=backbone_out_channels[2], out_channels=conv_out, kernel_size=1),
            nn.BatchNorm2d(conv_out),
            nn.ReLU()
        )
        self.reduce_conv_c5 = nn.Sequential(
            nn.Conv2d(in_channels=backbone_out_channels[3], out_channels=conv_out, kernel_size=1),
            nn.BatchNorm2d(conv_out),
            nn.ReLU()
        )
        self.fpems = nn.ModuleList()
        for i in range(fpem_repeat):
            self.fpems.append(FPEM(conv_out))
        self.out_conv = nn.Conv2d(in_channels=conv_out * 4, out_channels=6, kernel_size=1)

    def forward(self, x):
        c2, c3, c4, c5 = x
        # reduce channel
        c2 = self.reduce_conv_c2(c2)
        c3 = self.reduce_conv_c3(c3)
        c4 = self.reduce_conv_c4(c4)
        c5 = self.reduce_conv_c5(c5)

        # FPEM
        for i, fpem in enumerate(self.fpems):
            c2, c3, c4, c5 = fpem(c2, c3, c4, c5)
            if i == 0:
                c2_ffm = c2
                c3_ffm = c3
                c4_ffm = c4
                c5_ffm = c5
            else:
                c2_ffm += c2
                c3_ffm += c3
                c4_ffm += c4
                c5_ffm += c5

        # FFM
        c5 = F.interpolate(c5_ffm, c2_ffm.size()[-2:], mode='bilinear')
        c4 = F.interpolate(c4_ffm, c2_ffm.size()[-2:], mode='bilinear')
        c3 = F.interpolate(c3_ffm, c2_ffm.size()[-2:], mode='bilinear')
        Fy = torch.cat([c2_ffm, c3, c4, c5], dim=1)
        y = self.out_conv(Fy)
        return y


class FPEM(nn.Module):
    def __init__(self, in_channels=128):
        super().__init__()
        self.up_add1 = SeparableConv2d(in_channels, in_channels, 1)
        self.up_add2 = SeparableConv2d(in_channels, in_channels, 1)
        self.up_add3 = SeparableConv2d(in_channels, in_channels, 1)
        self.down_add1 = SeparableConv2d(in_channels, in_channels, 2)
        self.down_add2 = SeparableConv2d(in_channels, in_channels, 2)
        self.down_add3 = SeparableConv2d(in_channels, in_channels, 2)

    def forward(self, c2, c3, c4, c5):
        # up阶段
        c4 = self.up_add1(self._upsample_add(c5, c4))
        c3 = self.up_add2(self._upsample_add(c4, c3))
        c2 = self.up_add3(self._upsample_add(c3, c2))

        # down 阶段
        c3 = self.down_add1(self._upsample_add(c3, c2))
        c4 = self.down_add2(self._upsample_add(c4, c3))
        c5 = self.down_add3(self._upsample_add(c5, c4))
        return c2, c3, c4, c5

    def _upsample_add(self, x, y):
        return F.interpolate(x, size=y.size()[2:], mode='bilinear') + y


class SeparableConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        super(SeparableConv2d, self).__init__()

        self.depthwise_conv = nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=3, padding=1,
                                        stride=stride, groups=in_channels)
        self.pointwise_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1)
        self.bn = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.depthwise_conv(x)
        x = self.pointwise_conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x