jfataphd commited on
Commit
e48b5b5
·
1 Parent(s): f21967a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -15
app.py CHANGED
@@ -21,26 +21,32 @@ st.markdown("""
21
  </style>
22
  """, unsafe_allow_html=True)
23
 
24
- st.header("Word2Vec App for Clotting Pubmed Database.")
 
 
 
 
 
 
25
 
26
- text_input_value = st.text_input("Enter one term to search within the Clotting database", max_chars=50)
 
 
 
 
27
  query = text_input_value
28
  query = query.lower()
29
  # query = input ("Enter your keyword(s):")
30
  if query:
31
-
32
- if query.isalpha():
33
- bar = st.progress(0)
34
- time.sleep(.2)
35
- st.caption(":LightSkyBlue[searching 40123 PubMed abstracts]")
36
- for i in range(10):
37
- bar.progress((i + 1) * 10)
38
- time.sleep(.1)
39
- else:
40
- st.write('Please omit numbers in term')
41
 
42
  try:
43
- model = Word2Vec.load("pubmed_model_clotting") # you can continue training with the loaded model!
44
  words = list(model.wv.key_to_index)
45
  X = model.wv[model.wv.key_to_index]
46
  model2 = model.wv[query]
@@ -85,7 +91,7 @@ if query:
85
  plt.clf()
86
 
87
  csv = table.head(100).to_csv().encode('utf-8')
88
- st.download_button(label="download top 100 words (csv)", data=csv, file_name='clotting_words.csv', mime='text/csv')
89
 
90
  # st.write(short_table)
91
  #
@@ -126,7 +132,7 @@ if query:
126
  st.pyplot(fig2)
127
 
128
  csv = df1.head(100).to_csv().encode('utf-8')
129
- st.download_button(label="download top 100 genes (csv)", data=csv, file_name='clotting_genes.csv', mime='text/csv')
130
 
131
  # findRelationships(query, df)
132
 
 
21
  </style>
22
  """, unsafe_allow_html=True)
23
 
24
+ opt=st.sidebar.radio("Select a PubMed Database", options=('Clotting', 'Neuroblastoma'))
25
+ if opt == "Clotting":
26
+ model_used = ("pubmed_model_clotting")
27
+ database_name = "Clotting"
28
+ if opt == "Neuroblastoma":
29
+ model_used = ("pubmed_model_clotting")
30
+ database_name = "Neuroblastoma"
31
 
32
+
33
+ st.header(f"Word2Vec App for {database_name} Pubmed Database.")
34
+ st.subheader("Uncovering knowledge through Natural Language Processing (NLP)")
35
+
36
+ text_input_value = st.text_input(f"Enter one term to search within the {database_name} database", max_chars=50)
37
  query = text_input_value
38
  query = query.lower()
39
  # query = input ("Enter your keyword(s):")
40
  if query:
41
+ bar = st.progress(0)
42
+ time.sleep(.2)
43
+ st.caption(f":LightSkyBlue[searching 40123 {database_name} PubMed abstracts]")
44
+ for i in range(10):
45
+ bar.progress((i + 1) * 10)
46
+ time.sleep(.1)
 
 
 
 
47
 
48
  try:
49
+ model = Word2Vec.load(model_used) # you can continue training with the loaded model!
50
  words = list(model.wv.key_to_index)
51
  X = model.wv[model.wv.key_to_index]
52
  model2 = model.wv[query]
 
91
  plt.clf()
92
 
93
  csv = table.head(100).to_csv().encode('utf-8')
94
+ st.download_button(label="download top 100 words (csv)", data=csv, file_name=f'{database_name}_words.csv', mime='text/csv')
95
 
96
  # st.write(short_table)
97
  #
 
132
  st.pyplot(fig2)
133
 
134
  csv = df1.head(100).to_csv().encode('utf-8')
135
+ st.download_button(label="download top 100 genes (csv)", data=csv, file_name=f'{database_name}_genes.csv', mime='text/csv')
136
 
137
  # findRelationships(query, df)
138