Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -8,8 +8,7 @@ import squarify
|
|
8 |
import numpy as np
|
9 |
|
10 |
# Define the HTML and CSS styles
|
11 |
-
st.markdown(
|
12 |
-
"""
|
13 |
<style>
|
14 |
body {
|
15 |
background-color: #EBF5FB;
|
@@ -20,33 +19,38 @@ st.markdown(
|
|
20 |
# color: #ffffff;
|
21 |
}
|
22 |
</style>
|
23 |
-
""",
|
24 |
-
unsafe_allow_html=True
|
25 |
-
)
|
26 |
|
27 |
st.header("Word2Vec App for Clotting Pubmed Database.")
|
28 |
|
29 |
-
text_input_value = st.text_input("Enter one term to search within the Clotting database")
|
30 |
query = text_input_value
|
31 |
query = query.lower()
|
32 |
# query = input ("Enter your keyword(s):")
|
33 |
-
|
34 |
if query:
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
table = model.wv.most_similar_cosmul(query, topn=10000)
|
51 |
table = (pd.DataFrame(table))
|
52 |
table.index.name = 'Rank'
|
@@ -70,7 +74,8 @@ if query:
|
|
70 |
color = [cmap[i] for i in range(len(sizes))]
|
71 |
|
72 |
short_table.set_index('Word', inplace=True)
|
73 |
-
squarify.plot(sizes=sizes, label=short_table.index.tolist(), color=color, edgecolor="#EBF5FB",
|
|
|
74 |
# # plot the treemap using matplotlib
|
75 |
plt.axis('off')
|
76 |
fig = plt.gcf()
|
@@ -80,11 +85,7 @@ if query:
|
|
80 |
plt.clf()
|
81 |
|
82 |
csv = table.head(100).to_csv().encode('utf-8')
|
83 |
-
st.download_button(
|
84 |
-
label="download top 100 words (csv)",
|
85 |
-
data=csv,
|
86 |
-
file_name='clotting_words.csv',
|
87 |
-
mime='text/csv')
|
88 |
|
89 |
# st.write(short_table)
|
90 |
#
|
@@ -104,14 +105,15 @@ if query:
|
|
104 |
st.subheader(f"Top 10 Genes closely related to {query}")
|
105 |
|
106 |
df10 = df1.head(10)
|
107 |
-
df10.index = 1/df10.index
|
108 |
sizes = df10.index.tolist()
|
109 |
|
110 |
cmap2 = plt.cm.Blues(np.linspace(0.05, .5, len(sizes)))
|
111 |
color2 = [cmap2[i] for i in range(len(sizes))]
|
112 |
|
113 |
df10.set_index('Human Gene', inplace=True)
|
114 |
-
squarify.plot(sizes=sizes, label=df10.index.tolist(), color=color2, edgecolor="#EBF5FB",
|
|
|
115 |
#
|
116 |
# # plot the treemap using matplotlib
|
117 |
|
@@ -124,24 +126,11 @@ if query:
|
|
124 |
st.pyplot(fig2)
|
125 |
|
126 |
csv = df1.head(100).to_csv().encode('utf-8')
|
127 |
-
st.download_button(
|
128 |
-
label="download top 100 genes (csv)",
|
129 |
-
data=csv,
|
130 |
-
file_name='clotting_genes.csv',
|
131 |
-
mime='text/csv')
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
|
137 |
# findRelationships(query, df)
|
138 |
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
# model = gensim.models.KeyedVectors.load_word2vec_format('pubmed_model_clotting', binary=True)
|
146 |
# similar_words = model.most_similar(word)
|
147 |
# output = json.dumps({"word": word, "similar_words": similar_words})
|
|
|
8 |
import numpy as np
|
9 |
|
10 |
# Define the HTML and CSS styles
|
11 |
+
st.markdown("""
|
|
|
12 |
<style>
|
13 |
body {
|
14 |
background-color: #EBF5FB;
|
|
|
19 |
# color: #ffffff;
|
20 |
}
|
21 |
</style>
|
22 |
+
""", unsafe_allow_html=True)
|
|
|
|
|
23 |
|
24 |
st.header("Word2Vec App for Clotting Pubmed Database.")
|
25 |
|
26 |
+
text_input_value = st.text_input("Enter one term to search within the Clotting database", max_chars=50)
|
27 |
query = text_input_value
|
28 |
query = query.lower()
|
29 |
# query = input ("Enter your keyword(s):")
|
|
|
30 |
if query:
|
31 |
+
|
32 |
+
if query.isalpha():
|
33 |
+
bar = st.progress(0)
|
34 |
+
time.sleep(.2)
|
35 |
+
st.caption(":LightSkyBlue[searching 40123 PubMed abstracts]")
|
36 |
+
for i in range(10):
|
37 |
+
bar.progress((i + 1) * 10)
|
38 |
+
time.sleep(.1)
|
39 |
+
else:
|
40 |
+
st.write('Please omit numbers in term')
|
41 |
+
|
42 |
+
try:
|
43 |
+
model = Word2Vec.load("pubmed_model_clotting") # you can continue training with the loaded model!
|
44 |
+
words = list(model.wv.key_to_index)
|
45 |
+
X = model.wv[model.wv.key_to_index]
|
46 |
+
model2 = model.wv[query]
|
47 |
+
df = pd.DataFrame(X)
|
48 |
+
|
49 |
+
except:
|
50 |
+
st.error("Term occurrence is too low - please try another term")
|
51 |
+
st.stop()
|
52 |
+
|
53 |
+
# def findRelationships(query, df):
|
54 |
table = model.wv.most_similar_cosmul(query, topn=10000)
|
55 |
table = (pd.DataFrame(table))
|
56 |
table.index.name = 'Rank'
|
|
|
74 |
color = [cmap[i] for i in range(len(sizes))]
|
75 |
|
76 |
short_table.set_index('Word', inplace=True)
|
77 |
+
squarify.plot(sizes=sizes, label=short_table.index.tolist(), color=color, edgecolor="#EBF5FB",
|
78 |
+
text_kwargs={'fontsize': 10})
|
79 |
# # plot the treemap using matplotlib
|
80 |
plt.axis('off')
|
81 |
fig = plt.gcf()
|
|
|
85 |
plt.clf()
|
86 |
|
87 |
csv = table.head(100).to_csv().encode('utf-8')
|
88 |
+
st.download_button(label="download top 100 words (csv)", data=csv, file_name='clotting_words.csv', mime='text/csv')
|
|
|
|
|
|
|
|
|
89 |
|
90 |
# st.write(short_table)
|
91 |
#
|
|
|
105 |
st.subheader(f"Top 10 Genes closely related to {query}")
|
106 |
|
107 |
df10 = df1.head(10)
|
108 |
+
df10.index = 1 / df10.index
|
109 |
sizes = df10.index.tolist()
|
110 |
|
111 |
cmap2 = plt.cm.Blues(np.linspace(0.05, .5, len(sizes)))
|
112 |
color2 = [cmap2[i] for i in range(len(sizes))]
|
113 |
|
114 |
df10.set_index('Human Gene', inplace=True)
|
115 |
+
squarify.plot(sizes=sizes, label=df10.index.tolist(), color=color2, edgecolor="#EBF5FB",
|
116 |
+
text_kwargs={'fontsize': 12})
|
117 |
#
|
118 |
# # plot the treemap using matplotlib
|
119 |
|
|
|
126 |
st.pyplot(fig2)
|
127 |
|
128 |
csv = df1.head(100).to_csv().encode('utf-8')
|
129 |
+
st.download_button(label="download top 100 genes (csv)", data=csv, file_name='clotting_genes.csv', mime='text/csv')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
# findRelationships(query, df)
|
132 |
|
133 |
|
|
|
|
|
|
|
|
|
|
|
134 |
# model = gensim.models.KeyedVectors.load_word2vec_format('pubmed_model_clotting', binary=True)
|
135 |
# similar_words = model.most_similar(word)
|
136 |
# output = json.dumps({"word": word, "similar_words": similar_words})
|