Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -85,16 +85,16 @@ if query:
|
|
85 |
bar.progress((i + 1) * 10)
|
86 |
time.sleep(.1)
|
87 |
|
88 |
-
try:
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
except:
|
96 |
-
|
97 |
-
|
98 |
st.markdown("---")
|
99 |
# def findRelationships(query, df):
|
100 |
|
@@ -133,62 +133,61 @@ if query:
|
|
133 |
unsafe_allow_html=True)
|
134 |
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
|
154 |
-
|
155 |
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in short_table.index]
|
156 |
-
|
157 |
|
158 |
-
|
159 |
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
hover_name=(table2.head(value_word)['SIMILARITY']))
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
|
172 |
texttemplate="</b><br><span "
|
173 |
"style='font-family: Arial; font-size: 15px;'>%{customdata[1]}<br>"
|
174 |
"<a href='%{customdata[0]}'>PubMed"
|
175 |
"</a><br><a href='%{customdata[3]}'>Wikipedia"
|
176 |
"</span></a>")
|
177 |
-
|
178 |
|
179 |
-
|
180 |
-
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
|
186 |
-
|
187 |
-
|
188 |
mime='text/csv')
|
189 |
-
|
190 |
-
|
191 |
-
st.warning(
|
192 |
f"This selection exceeds the number of similar words related to {query} within the {database_name} corpus")
|
193 |
|
194 |
st.markdown("---")
|
@@ -204,7 +203,7 @@ if query:
|
|
204 |
df1.rename(columns={'Word': 'Human Gene'}, inplace=True)
|
205 |
df1["Human Gene"] = df1["Human Gene"].str.upper()
|
206 |
# print(df1.head(50))
|
207 |
-
print()
|
208 |
# df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
|
209 |
# time.sleep(2)
|
210 |
# Create the slider with increments of 5 up to 100
|
@@ -214,82 +213,184 @@ if query:
|
|
214 |
f"and semantically similar to <span style='color:red; font-style: italic;'>{query}</span> "
|
215 |
f"within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus.</p></b>",
|
216 |
unsafe_allow_html=True)
|
217 |
-
|
218 |
-
if
|
219 |
# st.subheader(f"Top {value} genes closely related to {query}: "
|
220 |
# f"Click on the Pubmed and NCBI links for more gene information")
|
221 |
|
222 |
st.markdown(
|
223 |
-
f"<b><p style='font-family: Arial; font-size: 20px; font-style: Bold;'>Top <span style='color:red; font-style: italic;'>{
|
224 |
f"</span>genes similar to "
|
225 |
f"<span style='color:red; font-style: italic;'>{query}:</span> Click on the squares to expand and the Pubmed and NCBI links for more gene information</span></p></b>",
|
226 |
unsafe_allow_html=True)
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
|
|
266 |
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
|
267 |
texttemplate="<b><span style='font-family: Arial; font-size: 20px;'>%{customdata[4]}</span></b><br><span "
|
268 |
"style='font-family: Arial; font-size: 15px;'>%{customdata[1]}<br>"
|
269 |
"<a href='%{customdata[0]}'>PubMed"
|
270 |
"</a><br><a href='%{customdata[3]}'>NCBI"
|
271 |
"</span></a>")
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
|
276 |
-
|
277 |
-
|
278 |
|
279 |
-
|
280 |
-
|
281 |
|
282 |
|
283 |
|
284 |
-
|
285 |
-
|
286 |
mime='text/csv')
|
287 |
|
288 |
|
289 |
-
|
290 |
-
|
291 |
f"This selection exceeds the number of similar genes related to {query} within the {database_name} corpus")
|
292 |
st.markdown("---")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
st.subheader("Cancer-related videos")
|
294 |
if query:
|
295 |
idlist=[]
|
|
|
85 |
bar.progress((i + 1) * 10)
|
86 |
time.sleep(.1)
|
87 |
|
88 |
+
# try:
|
89 |
+
model = Word2Vec.load(model_used) # you can continue training with the loaded model!
|
90 |
+
words = list(model.wv.key_to_index)
|
91 |
+
X = model.wv[model.wv.key_to_index]
|
92 |
+
model2 = model.wv[query]
|
93 |
+
df = pd.DataFrame(X)
|
94 |
+
|
95 |
+
# except:
|
96 |
+
# st.error("Term occurrence is too low - please try another term")
|
97 |
+
# st.stop()
|
98 |
st.markdown("---")
|
99 |
# def findRelationships(query, df):
|
100 |
|
|
|
133 |
unsafe_allow_html=True)
|
134 |
|
135 |
|
136 |
+
# calculate the sizes of the squares in the treemap
|
137 |
+
short_table = table2.head(value_word).round(2)
|
138 |
+
short_table.index += 1
|
139 |
+
short_table.index = (1 / short_table.index)*10
|
140 |
+
sizes = short_table.index.tolist()
|
141 |
|
142 |
|
143 |
+
short_table.set_index('Word', inplace=True)
|
144 |
+
# label = short_table.index.tolist()
|
145 |
+
# print(short_table.index)
|
146 |
+
table2["SIMILARITY"] = 'Similarity Score ' + table2.head(10)["SIMILARITY"].round(2).astype(str)
|
147 |
+
rank_num = list(short_table.index.tolist())
|
148 |
+
# avg_size = sum(sizes) / len(short_table.index)
|
149 |
+
df = short_table
|
150 |
+
try:
|
151 |
+
# Define the `text` column for labels and `href` column for links
|
152 |
+
df['text'] = short_table.index
|
153 |
|
154 |
+
df['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
|
155 |
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in short_table.index]
|
156 |
+
df['href2'] = [f'https://en.wikipedia.org/wiki/' + c for c in short_table.index]
|
157 |
|
158 |
+
df['database'] = database_name
|
159 |
|
160 |
|
161 |
+
# print(sizes)
|
162 |
+
# '{0} in {1}'.format(unicode(self.author, 'utf-8'), unicode(self.publication, 'utf-8'))
|
163 |
+
# Create the treemap using `px.treemap`
|
164 |
+
fig = px.treemap(df, path=[short_table.index], values=sizes, custom_data=['href', 'text', 'database', 'href2'],
|
165 |
hover_name=(table2.head(value_word)['SIMILARITY']))
|
166 |
|
167 |
+
fig.update(layout_coloraxis_showscale=False)
|
168 |
+
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
|
169 |
+
fig.update_annotations(visible=False)
|
170 |
+
fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
|
171 |
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
|
172 |
texttemplate="</b><br><span "
|
173 |
"style='font-family: Arial; font-size: 15px;'>%{customdata[1]}<br>"
|
174 |
"<a href='%{customdata[0]}'>PubMed"
|
175 |
"</a><br><a href='%{customdata[3]}'>Wikipedia"
|
176 |
"</span></a>")
|
177 |
+
fig.update_layout(uniformtext=dict(minsize=15), treemapcolorway=["lightgreen"])
|
178 |
|
179 |
+
# st.pyplot(fig2)
|
180 |
+
st.plotly_chart(fig, use_container_width=True)
|
181 |
|
182 |
+
# st.caption(
|
183 |
+
# "Gene designation and database provided by HUGO Gene Nomenclature Committee (HGNC): https://www.genenames.org/")
|
184 |
+
# st.caption("Gene designation add in exceptions [p21, p53, her2, her3]")
|
185 |
|
186 |
+
csv = table2.head(value_word).to_csv().encode('utf-8')
|
187 |
+
st.download_button(label=f"download top {value_word} words (csv)", data=csv, file_name=f'{database_name}_words.csv',
|
188 |
mime='text/csv')
|
189 |
+
except:
|
190 |
+
st.warning(
|
|
|
191 |
f"This selection exceeds the number of similar words related to {query} within the {database_name} corpus")
|
192 |
|
193 |
st.markdown("---")
|
|
|
203 |
df1.rename(columns={'Word': 'Human Gene'}, inplace=True)
|
204 |
df1["Human Gene"] = df1["Human Gene"].str.upper()
|
205 |
# print(df1.head(50))
|
206 |
+
# print()
|
207 |
# df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
|
208 |
# time.sleep(2)
|
209 |
# Create the slider with increments of 5 up to 100
|
|
|
213 |
f"and semantically similar to <span style='color:red; font-style: italic;'>{query}</span> "
|
214 |
f"within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus.</p></b>",
|
215 |
unsafe_allow_html=True)
|
216 |
+
value_gene = st.slider("Gene", 0, 100, step=5)
|
217 |
+
if value_gene > 0:
|
218 |
# st.subheader(f"Top {value} genes closely related to {query}: "
|
219 |
# f"Click on the Pubmed and NCBI links for more gene information")
|
220 |
|
221 |
st.markdown(
|
222 |
+
f"<b><p style='font-family: Arial; font-size: 20px; font-style: Bold;'>Top <span style='color:red; font-style: italic;'>{value_gene} "
|
223 |
f"</span>genes similar to "
|
224 |
f"<span style='color:red; font-style: italic;'>{query}:</span> Click on the squares to expand and the Pubmed and NCBI links for more gene information</span></p></b>",
|
225 |
unsafe_allow_html=True)
|
226 |
|
227 |
+
df10 = df1.head(value_gene)
|
228 |
+
df10.index = (1 / df10.index)*10000
|
229 |
+
sizes = df10.index.tolist()
|
230 |
+
df10.set_index('Human Gene', inplace=True)
|
231 |
+
|
232 |
+
df3 = df1.copy()
|
233 |
+
df3["SIMILARITY"] = 'Similarity Score ' + df3.head(value_gene)["SIMILARITY"].round(2).astype(str)
|
234 |
+
df3.reset_index(inplace=True)
|
235 |
+
df3 = df3.rename(columns={'Human Gene': 'symbol2'})
|
236 |
+
# Use df.query to get a subset of df1 based on ids in df2
|
237 |
+
subset = df3.head(value_gene).query('symbol2 in @df2.symbol2')
|
238 |
+
# Use merge to join the two DataFrames on id
|
239 |
+
result = pd.merge(subset, df2, on='symbol2')
|
240 |
+
# Show the result
|
241 |
+
# print(result)
|
242 |
+
# label = df10.index.tolist()
|
243 |
+
# df2 = df10
|
244 |
+
# print(df2)
|
245 |
+
try:
|
246 |
+
# Define the `text` column for labels and `href` column for links
|
247 |
+
df10['text'] = df10.index
|
248 |
+
df10['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
|
249 |
+
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in df10['text']]
|
250 |
+
df10['href2'] = [f'https://www.ncbi.nlm.nih.gov/gene/?term=' + c for c in df10['text']]
|
251 |
+
|
252 |
+
df10['name'] = [c for c in result['Approved name']]
|
253 |
+
|
254 |
+
df10['database'] = database_name
|
255 |
+
|
256 |
+
# print(df['name'])
|
257 |
+
|
258 |
+
# Create the treemap using `px.treemap`
|
259 |
+
fig = px.treemap(df10, path=[df10['text']], values=sizes,
|
260 |
+
custom_data=['href', 'name', 'database', 'href2', 'text'], hover_name=(df3.head(value_gene)['SIMILARITY']))
|
261 |
+
|
262 |
+
fig.update(layout_coloraxis_showscale=False)
|
263 |
+
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
|
264 |
+
fig.update_annotations(visible=False)
|
265 |
+
fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
|
266 |
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
|
267 |
texttemplate="<b><span style='font-family: Arial; font-size: 20px;'>%{customdata[4]}</span></b><br><span "
|
268 |
"style='font-family: Arial; font-size: 15px;'>%{customdata[1]}<br>"
|
269 |
"<a href='%{customdata[0]}'>PubMed"
|
270 |
"</a><br><a href='%{customdata[3]}'>NCBI"
|
271 |
"</span></a>")
|
272 |
+
fig.update_layout(uniformtext=dict(minsize=15), treemapcolorway=["lightblue"])
|
273 |
+
# # display the treemap in Streamlit
|
274 |
+
# with treemap2:
|
275 |
|
276 |
+
# st.pyplot(fig2)
|
277 |
+
st.plotly_chart(fig, use_container_width=True)
|
278 |
|
279 |
+
st.caption("Gene designation and database provided by HUGO Gene Nomenclature Committee (HGNC): https://www.genenames.org/")
|
280 |
+
st.caption("Gene designation add in exceptions [p21, p53, her2, her3]")
|
281 |
|
282 |
|
283 |
|
284 |
+
csv = df1.head(value_gene).to_csv().encode('utf-8')
|
285 |
+
st.download_button(label=f"download top {value_gene} genes (csv)", data=csv, file_name=f'{database_name}_genes.csv',
|
286 |
mime='text/csv')
|
287 |
|
288 |
|
289 |
+
except:
|
290 |
+
st.warning(
|
291 |
f"This selection exceeds the number of similar genes related to {query} within the {database_name} corpus")
|
292 |
st.markdown("---")
|
293 |
+
|
294 |
+
# st.write(short_table)
|
295 |
+
#
|
296 |
+
|
297 |
+
# print()
|
298 |
+
# print("Human genes similar to " + str(query))
|
299 |
+
df1 = table
|
300 |
+
df2 = pd.read_csv('protein.csv')
|
301 |
+
m = df1.Word.isin(df2.protein)
|
302 |
+
df1 = df1[m]
|
303 |
+
df1.rename(columns={'Word': 'Protein'}, inplace=True)
|
304 |
+
# print(df1)
|
305 |
+
df_len = len(df1)
|
306 |
+
# df1["Protein"] = df1["Protein"].str.upper()
|
307 |
+
# print(df1.head(50))
|
308 |
+
# print()
|
309 |
+
# df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
|
310 |
+
# time.sleep(2)
|
311 |
+
# Create the slider with increments of 5 up to 100
|
312 |
+
|
313 |
+
st.markdown(
|
314 |
+
f"<b><p style='font-family: Arial; font-size: 20px;'>Populate a treemap with the slider below to visualize "
|
315 |
+
f"<span style='color:red; font-style: italic;'>proteins</span> contextually "
|
316 |
+
f"and semantically similar to <span style='color:red; font-style: italic;'>{query}</span> "
|
317 |
+
f"within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus.</p></b>",
|
318 |
+
unsafe_allow_html=True)
|
319 |
+
value_protein = st.slider("Protein", 0, 100, step=5)
|
320 |
+
# print(value_protein)
|
321 |
+
if value_protein > 0:
|
322 |
+
# st.subheader(f"Top {value} genes closely related to {query}: "
|
323 |
+
# f"Click on the Pubmed and NCBI links for more gene information")
|
324 |
+
|
325 |
+
st.markdown(
|
326 |
+
f"<b><p style='font-family: Arial; font-size: 20px; font-style: Bold;'>Top <span style='color:red; font-style: italic;'>{value_protein} "
|
327 |
+
f"</span>proteins similar to "
|
328 |
+
f"<span style='color:red; font-style: italic;'>{query}:</span> Click on the squares to expand and the Pubmed and Wikipedia links for more protein information</span></p></b>",
|
329 |
+
unsafe_allow_html=True)
|
330 |
+
|
331 |
+
df11 = df1.head(value_protein)
|
332 |
+
print(df11)
|
333 |
+
|
334 |
+
df11.index = (1 / df11.index) * 10000
|
335 |
+
sizes = df11.index.tolist()
|
336 |
+
|
337 |
+
df11.set_index('Protein', inplace=True)
|
338 |
+
|
339 |
+
df4 = df1.copy()
|
340 |
+
# print(df4.head(10))
|
341 |
+
df4["SIMILARITY"] = 'Similarity Score ' + df4.head(value_protein)["SIMILARITY"].round(2).astype(str)
|
342 |
+
df4.reset_index(inplace=True)
|
343 |
+
# df4 = df4.rename(columns={'Protein': 'symbol2'})
|
344 |
+
# print(df4)
|
345 |
+
# # Use df.query to get a subset of df1 based on ids in df2
|
346 |
+
# subset = df4.head(value_gene).query('symbol2 in @df2b.symbol2')
|
347 |
+
# # Use merge to join the two DataFrames on id
|
348 |
+
# result = pd.merge(subset, df2b, on='symbol2')
|
349 |
+
# print(result)
|
350 |
+
if value_protein <= df_len:
|
351 |
+
# Define the `text` column for labels and `href` column for links
|
352 |
+
df11['text'] = df11.index
|
353 |
+
df11['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
|
354 |
+
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in df11['text']]
|
355 |
+
df11['href2'] = [f'https://en.wikipedia.org/wiki/' + c for c in df11['text']]
|
356 |
+
|
357 |
+
df11['database'] = database_name
|
358 |
+
|
359 |
+
# df11['name'] = [c for c in result['Approved name']]
|
360 |
+
|
361 |
+
# Create the treemap using `px.treemap`
|
362 |
+
fig = px.treemap(df11, path=[df11['text']], values=sizes, custom_data=['href', 'database', 'href2', 'text'],
|
363 |
+
hover_name=(df4.head(value_protein)['SIMILARITY']))
|
364 |
+
|
365 |
+
fig.update(layout_coloraxis_showscale=False)
|
366 |
+
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
|
367 |
+
fig.update_annotations(visible=False)
|
368 |
+
fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
|
369 |
+
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
|
370 |
+
texttemplate="<b><span style='font-family: Arial; font-size: 20px;'>%{customdata[3]}</span></b><br>"
|
371 |
+
"<a href='%{customdata[0]}'>PubMed"
|
372 |
+
"</a><br><a href='%{customdata[2]}'>Wikipedia"
|
373 |
+
"</span></a>")
|
374 |
+
fig.update_layout(uniformtext=dict(minsize=15), treemapcolorway=["lightblue"])
|
375 |
+
# # display the treemap in Streamlit
|
376 |
+
# with treemap2:
|
377 |
+
|
378 |
+
# st.pyplot(fig2)
|
379 |
+
st.plotly_chart(fig, use_container_width=True)
|
380 |
+
|
381 |
+
st.caption(
|
382 |
+
"Protein designation and database provided by HUGO Gene Nomenclature Committee (HGNC): https://www.genenames.org/")
|
383 |
+
|
384 |
+
csv = df1.head(value_protein).to_csv().encode('utf-8')
|
385 |
+
st.download_button(label=f"download top {value_protein} proteins (csv)", data=csv, file_name=f'{database_name}_genes.csv',
|
386 |
+
mime='text/csv')
|
387 |
+
|
388 |
+
|
389 |
+
else:
|
390 |
+
st.warning(f"This selection exceeds the number of similar proteins related to {query} within the {database_name} corpus")
|
391 |
+
st.markdown("---")
|
392 |
+
|
393 |
+
|
394 |
st.subheader("Cancer-related videos")
|
395 |
if query:
|
396 |
idlist=[]
|