Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -53,6 +53,14 @@ if opt == "Neuroblastoma corpus":
|
|
53 |
model_used = ("pubmed_model_neuroblastoma")
|
54 |
num_abstracts = 29032
|
55 |
database_name = "Neuroblastoma"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
st.header(":red[*F*]ast :red[*A*]cting :red[*T*]ext :red[*A*]nalysis (:red[*FATA*]) 4 Science")
|
58 |
|
@@ -89,6 +97,8 @@ if query:
|
|
89 |
st.stop()
|
90 |
st.markdown("---")
|
91 |
# def findRelationships(query, df):
|
|
|
|
|
92 |
table = model.wv.most_similar_cosmul(query, topn=10000)
|
93 |
table = (pd.DataFrame(table))
|
94 |
table.index.name = 'Rank'
|
@@ -103,58 +113,84 @@ if query:
|
|
103 |
# short_table = table.head(50)
|
104 |
# print(table)
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
# calculate the sizes of the squares in the treemap
|
108 |
-
short_table = table2.head(
|
109 |
short_table.index += 1
|
110 |
short_table.index = (1 / short_table.index)*10
|
111 |
sizes = short_table.index.tolist()
|
112 |
|
113 |
-
cmap = plt.cm.Greens(np.linspace(0.05, .5, len(sizes)))
|
114 |
-
color = [cmap[i] for i in range(len(sizes))]
|
115 |
|
116 |
short_table.set_index('Word', inplace=True)
|
117 |
-
|
118 |
-
|
119 |
-
# # plot the treemap using matplotlib
|
120 |
-
plt.axis('off')
|
121 |
-
# Add legend to top right, outside plot region
|
122 |
-
# plt.legend("upper right", bbox_to_anchor=(-.2, 0))
|
123 |
-
fig = plt.gcf()
|
124 |
-
fig.patch.set_facecolor('#CCFFFF')
|
125 |
-
# print(table.head(10)["SIMILARITY"])
|
126 |
-
# # display the treemap in Streamlit
|
127 |
table2["SIMILARITY"] = 'Similarity Score ' + table2.head(10)["SIMILARITY"].round(2).astype(str)
|
128 |
rank_num = list(short_table.index.tolist())
|
129 |
# avg_size = sum(sizes) / len(short_table.index)
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
# print(sizes)
|
132 |
# '{0} in {1}'.format(unicode(self.author, 'utf-8'), unicode(self.publication, 'utf-8'))
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
st.markdown("---")
|
159 |
# st.write(short_table)
|
160 |
#
|
@@ -178,7 +214,7 @@ if query:
|
|
178 |
f"and semantically similar to <span style='color:red; font-style: italic;'>{query}</span> "
|
179 |
f"within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus.</p></b>",
|
180 |
unsafe_allow_html=True)
|
181 |
-
value = st.slider("", 0, 100, step=5)
|
182 |
if value > 0:
|
183 |
# st.subheader(f"Top {value} genes closely related to {query}: "
|
184 |
# f"Click on the Pubmed and NCBI links for more gene information")
|
@@ -192,20 +228,8 @@ if query:
|
|
192 |
df10 = df1.head(value)
|
193 |
df10.index = (1 / df10.index)*10000
|
194 |
sizes = df10.index.tolist()
|
195 |
-
|
196 |
-
cmap2 = plt.cm.Blues(np.linspace(0.05, .5, len(sizes)))
|
197 |
-
color2 = [cmap2[i] for i in range(len(sizes))]
|
198 |
-
|
199 |
df10.set_index('Human Gene', inplace=True)
|
200 |
-
squarify.plot(sizes=sizes, label=df10.index.tolist(), color=color2, edgecolor="#EBF5FB",
|
201 |
-
text_kwargs={'fontsize': 12})
|
202 |
-
#
|
203 |
-
# # plot the treemap using matplotlib
|
204 |
|
205 |
-
plt.axis('off')
|
206 |
-
fig2 = plt.gcf()
|
207 |
-
fig2.patch.set_facecolor('#CCFFFF')
|
208 |
-
#
|
209 |
df3 = df1.copy()
|
210 |
df3["SIMILARITY"] = 'Similarity Score ' + df3.head(value)["SIMILARITY"].round(2).astype(str)
|
211 |
df3.reset_index(inplace=True)
|
@@ -216,31 +240,31 @@ if query:
|
|
216 |
result = pd.merge(subset, df2, on='symbol2')
|
217 |
# Show the result
|
218 |
# print(result)
|
219 |
-
|
220 |
-
|
221 |
try:
|
222 |
# Define the `text` column for labels and `href` column for links
|
223 |
-
|
224 |
-
|
225 |
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in df10.index]
|
226 |
-
|
227 |
|
228 |
-
|
229 |
|
230 |
-
|
231 |
|
232 |
# print(df['name'])
|
233 |
|
234 |
# Create the treemap using `px.treemap`
|
235 |
-
fig = px.treemap(
|
236 |
-
custom_data=['href', 'name', 'database', 'href2'], hover_name=(df3.head(value)['SIMILARITY']))
|
237 |
|
238 |
fig.update(layout_coloraxis_showscale=False)
|
239 |
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
|
240 |
fig.update_annotations(visible=False)
|
241 |
fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
|
242 |
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
|
243 |
-
texttemplate="<b><span style='font-family: Arial; font-size: 20px;'>%{
|
244 |
"style='font-family: Arial; font-size: 15px;'>%{customdata[1]}<br>"
|
245 |
"<a href='%{customdata[0]}'>PubMed"
|
246 |
"</a><br><a href='%{customdata[3]}'>NCBI"
|
@@ -260,6 +284,8 @@ if query:
|
|
260 |
csv = df1.head(value).to_csv().encode('utf-8')
|
261 |
st.download_button(label=f"download top {value} genes (csv)", data=csv, file_name=f'{database_name}_genes.csv',
|
262 |
mime='text/csv')
|
|
|
|
|
263 |
except:
|
264 |
st.warning(
|
265 |
f"This selection exceeds the number of similar genes related to {query} within the {database_name} corpus")
|
|
|
53 |
model_used = ("pubmed_model_neuroblastoma")
|
54 |
num_abstracts = 29032
|
55 |
database_name = "Neuroblastoma"
|
56 |
+
# if opt == "Breast Cancer corpus":
|
57 |
+
# model_used = ("pubmed_model_breast_cancer")
|
58 |
+
# num_abstracts = 290320
|
59 |
+
# database_name = "Breast_cancer"
|
60 |
+
# if opt == "Mammary gland corpus":
|
61 |
+
# model_used = ("pubmed_model_mammary_gland")
|
62 |
+
# num_abstracts = 79032
|
63 |
+
# database_name = "Mammary_gland"
|
64 |
|
65 |
st.header(":red[*F*]ast :red[*A*]cting :red[*T*]ext :red[*A*]nalysis (:red[*FATA*]) 4 Science")
|
66 |
|
|
|
97 |
st.stop()
|
98 |
st.markdown("---")
|
99 |
# def findRelationships(query, df):
|
100 |
+
|
101 |
+
|
102 |
table = model.wv.most_similar_cosmul(query, topn=10000)
|
103 |
table = (pd.DataFrame(table))
|
104 |
table.index.name = 'Rank'
|
|
|
113 |
# short_table = table.head(50)
|
114 |
# print(table)
|
115 |
|
116 |
+
# Create the slider with increments of 5 up to 100
|
117 |
+
|
118 |
+
st.markdown(
|
119 |
+
f"<b><p style='font-family: Arial; font-size: 20px;'>Populate a treemap with the slider below to visualize "
|
120 |
+
f"<span style='color:red; font-style: italic;'>words</span> contextually "
|
121 |
+
f"and semantically similar to <span style='color:red; font-style: italic;'>{query}</span> "
|
122 |
+
f"within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus.</p></b>",
|
123 |
+
unsafe_allow_html=True)
|
124 |
+
value_word = st.slider("Words", 0, 100, step=5)
|
125 |
+
if value_word > 0:
|
126 |
+
# st.subheader(f"Top {value} genes closely related to {query}: "
|
127 |
+
# f"Click on the Pubmed and NCBI links for more gene information")
|
128 |
+
|
129 |
+
st.markdown(
|
130 |
+
f"<b><p style='font-family: Arial; font-size: 20px; font-style: Bold;'>Top <span style='color:red; font-style: italic;'>{value_word} "
|
131 |
+
f"</span>words similar to "
|
132 |
+
f"<span style='color:red; font-style: italic;'>{query}:</span> Click on the squares to expand and the Wikipaedia links for more word information</span></p></b>",
|
133 |
+
unsafe_allow_html=True)
|
134 |
+
|
135 |
|
136 |
# calculate the sizes of the squares in the treemap
|
137 |
+
short_table = table2.head(value_word).round(2)
|
138 |
short_table.index += 1
|
139 |
short_table.index = (1 / short_table.index)*10
|
140 |
sizes = short_table.index.tolist()
|
141 |
|
|
|
|
|
142 |
|
143 |
short_table.set_index('Word', inplace=True)
|
144 |
+
# label = short_table.index.tolist()
|
145 |
+
print(short_table.index)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
table2["SIMILARITY"] = 'Similarity Score ' + table2.head(10)["SIMILARITY"].round(2).astype(str)
|
147 |
rank_num = list(short_table.index.tolist())
|
148 |
# avg_size = sum(sizes) / len(short_table.index)
|
149 |
+
df = short_table
|
150 |
+
try:
|
151 |
+
# Define the `text` column for labels and `href` column for links
|
152 |
+
df['text'] = short_table.index
|
153 |
+
|
154 |
+
df['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
|
155 |
+
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in short_table.index]
|
156 |
+
df['href2'] = [f'https://en.wikipedia.org/wiki/' + c for c in short_table.index]
|
157 |
+
|
158 |
+
df['database'] = database_name
|
159 |
+
|
160 |
+
|
161 |
# print(sizes)
|
162 |
# '{0} in {1}'.format(unicode(self.author, 'utf-8'), unicode(self.publication, 'utf-8'))
|
163 |
+
# Create the treemap using `px.treemap`
|
164 |
+
fig = px.treemap(df, path=[short_table.index], values=sizes, custom_data=['href', 'text', 'database', 'href2'],
|
165 |
+
hover_name=(table2.head(value_word)['SIMILARITY']))
|
166 |
+
|
167 |
+
fig.update(layout_coloraxis_showscale=False)
|
168 |
+
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
|
169 |
+
fig.update_annotations(visible=False)
|
170 |
+
fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
|
171 |
+
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
|
172 |
+
texttemplate="</b><br><span "
|
173 |
+
"style='font-family: Arial; font-size: 15px;'>%{customdata[1]}<br>"
|
174 |
+
"<a href='%{customdata[0]}'>PubMed"
|
175 |
+
"</a><br><a href='%{customdata[3]}'>Wikipedia"
|
176 |
+
"</span></a>")
|
177 |
+
fig.update_layout(uniformtext=dict(minsize=15), treemapcolorway=["lightgreen"])
|
178 |
+
|
179 |
+
# st.pyplot(fig2)
|
180 |
+
st.plotly_chart(fig, use_container_width=True)
|
181 |
+
|
182 |
+
# st.caption(
|
183 |
+
# "Gene designation and database provided by HUGO Gene Nomenclature Committee (HGNC): https://www.genenames.org/")
|
184 |
+
# st.caption("Gene designation add in exceptions [p21, p53, her2, her3]")
|
185 |
+
|
186 |
+
csv = table2.head(value_word).to_csv().encode('utf-8')
|
187 |
+
st.download_button(label=f"download top {value_word} words (csv)", data=csv, file_name=f'{database_name}_words.csv',
|
188 |
+
mime='text/csv')
|
189 |
+
|
190 |
+
except:
|
191 |
+
st.warning(
|
192 |
+
f"This selection exceeds the number of similar words related to {query} within the {database_name} corpus")
|
193 |
+
|
194 |
st.markdown("---")
|
195 |
# st.write(short_table)
|
196 |
#
|
|
|
214 |
f"and semantically similar to <span style='color:red; font-style: italic;'>{query}</span> "
|
215 |
f"within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus.</p></b>",
|
216 |
unsafe_allow_html=True)
|
217 |
+
value = st.slider("Gene", 0, 100, step=5)
|
218 |
if value > 0:
|
219 |
# st.subheader(f"Top {value} genes closely related to {query}: "
|
220 |
# f"Click on the Pubmed and NCBI links for more gene information")
|
|
|
228 |
df10 = df1.head(value)
|
229 |
df10.index = (1 / df10.index)*10000
|
230 |
sizes = df10.index.tolist()
|
|
|
|
|
|
|
|
|
231 |
df10.set_index('Human Gene', inplace=True)
|
|
|
|
|
|
|
|
|
232 |
|
|
|
|
|
|
|
|
|
233 |
df3 = df1.copy()
|
234 |
df3["SIMILARITY"] = 'Similarity Score ' + df3.head(value)["SIMILARITY"].round(2).astype(str)
|
235 |
df3.reset_index(inplace=True)
|
|
|
240 |
result = pd.merge(subset, df2, on='symbol2')
|
241 |
# Show the result
|
242 |
# print(result)
|
243 |
+
# label = df10.index.tolist()
|
244 |
+
df2 = df10
|
245 |
try:
|
246 |
# Define the `text` column for labels and `href` column for links
|
247 |
+
df2['text'] = df10.index
|
248 |
+
df2['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
|
249 |
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in df10.index]
|
250 |
+
df2['href2'] = [f'https://www.ncbi.nlm.nih.gov/gene/?term=' + c for c in df10.index]
|
251 |
|
252 |
+
df2['name'] = [c for c in result['Approved name']]
|
253 |
|
254 |
+
df2['database'] = database_name
|
255 |
|
256 |
# print(df['name'])
|
257 |
|
258 |
# Create the treemap using `px.treemap`
|
259 |
+
fig = px.treemap(df2, path=[df10.index], values=sizes,
|
260 |
+
custom_data=['href', 'name', 'database', 'href2', 'text'], hover_name=(df3.head(value)['SIMILARITY']))
|
261 |
|
262 |
fig.update(layout_coloraxis_showscale=False)
|
263 |
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
|
264 |
fig.update_annotations(visible=False)
|
265 |
fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
|
266 |
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
|
267 |
+
texttemplate="<b><span style='font-family: Arial; font-size: 20px;'>%{customdata[4]}</span></b><br><span "
|
268 |
"style='font-family: Arial; font-size: 15px;'>%{customdata[1]}<br>"
|
269 |
"<a href='%{customdata[0]}'>PubMed"
|
270 |
"</a><br><a href='%{customdata[3]}'>NCBI"
|
|
|
284 |
csv = df1.head(value).to_csv().encode('utf-8')
|
285 |
st.download_button(label=f"download top {value} genes (csv)", data=csv, file_name=f'{database_name}_genes.csv',
|
286 |
mime='text/csv')
|
287 |
+
|
288 |
+
|
289 |
except:
|
290 |
st.warning(
|
291 |
f"This selection exceeds the number of similar genes related to {query} within the {database_name} corpus")
|