File size: 6,224 Bytes
7ec2562
 
 
1fe6426
dfd0c40
7ec2562
 
9e9de0c
7ec2562
1fe6426
6c23874
1fe6426
4788f1f
7ec2562
4788f1f
 
 
 
 
 
c2bd523
4788f1f
 
 
 
 
 
 
1e9302e
7ec2562
 
 
 
 
 
 
 
70109b4
7ec2562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ac76c2
7ec2562
 
1fe6426
 
e539dbc
1fe6426
7ec2562
1fe6426
7ec2562
 
b815aae
 
 
 
 
7ec2562
 
 
 
9c27a00
e539dbc
 
9c27a00
e539dbc
 
9c27a00
e539dbc
 
 
 
 
 
 
 
9c27a00
e539dbc
 
 
 
 
 
 
 
9c27a00
 
e539dbc
9c27a00
 
 
 
 
e539dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c27a00
e539dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c27a00
 
 
e539dbc
7ec2562
 
 
 
 
 
 
 
 
b815aae
7ec2562
e539dbc
9c27a00
7ec2562
70109b4
e539dbc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import gradio as gr
import logging
import torch
from gpt4all import GPT4All

# Configure logging
logging.basicConfig(level=logging.INFO)

# Model configuration
model_name_or_path = "mistral-7b-openorca.Q4_0.gguf"

# Use CPU if CUDA is out of memory or not available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Ensure device is CPU if no GPU is available
if device.type == "cpu":
    logging.warning("CUDA is not available. Using CPU for model execution.")

def load_model():
    try:
        model = GPT4All(model_name_or_path)
        logging.info("Model loaded successfully.")
        return model
    except Exception as e:
        logging.error(f"Failed to load model: {e}")
        raise e

model = load_model()

def explain_advantages(electricity_consumption, car_type, vehicle_choice, range_km, daily_mileage, travel_mileage):
    logging.info("Function 'explain_advantages' called with inputs:")
    logging.info(f"Electricity Consumption: {electricity_consumption}")
    logging.info(f"Car Type: {car_type}")
    logging.info(f"Vehicle Choice: {vehicle_choice}")
    logging.info(f"Range (km): {range_km}")
    logging.info(f"Daily Mileage (km): {daily_mileage}")
    logging.info(f"Travel Mileage (km/year): {travel_mileage}")

    try:
        electricity_consumption = float(electricity_consumption)
        range_km = float(range_km)
        daily_mileage = float(daily_mileage)
        travel_mileage = float(travel_mileage)
        logging.info("Input conversion successful.")
    except ValueError as ve:
        logging.error(f"Input conversion error: {ve}")
        return "Invalid input: Please enter numeric values for consumption, range, and mileage."

    prompt = (
        f"Given a {car_type} with electricity consumption of {electricity_consumption} kWh/100km, "
        f"a range of {range_km} km, daily mileage of {daily_mileage} km, and annual mileage of {travel_mileage} km, "
        f"compare the benefits of choosing a {vehicle_choice} vehicle over a conventional vehicle. "
        f"Calculate potential fuel cost savings, CO2 emissions savings, and highlight additional benefits such as maintenance costs and driving experience. "
        f"Assume the average electricity cost is 0.13 EUR per kWh and gasoline cost is 1.6 EUR per liter. "
        f"Consider the average fuel economy for conventional vehicles to be 25 mpg and for hybrids to be 50 mpg. "
        f"Provide a convincing argument with derived figures to illustrate the advantages. "
        f"Provide advice to optimize the benefits of the chosen vehicle based on the input figures."
    )

    try:
        generated_text = model.generate(
            prompt,
            max_tokens=1500,
            temp=0.7,
            top_p=0.95,
            repeat_penalty=1.0
        )
        logging.info("Model generation successful.")
        
        if not generated_text:
            return "Model generation failed: No output text generated."
        else:
            return generated_text
    except Exception as e:
        logging.error(f"Error during model generation: {e}")
        return f"An error occurred while generating the response: {e}"

custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Montserrat:wght@300;400;700&display=swap');

body {
    background: linear-gradient(to bottom right, #f0f0f5, #e8f7fc);
    font-family: 'Montserrat', sans-serif;
    color: #333333;
    margin: 0;
    padding: 0;
}

.gradio-container {
    padding: 20px;
    max-width: 700px;
    margin: 0 auto;
}

label {
    font-weight: 700;
    color: #444444;
    margin-bottom: 8px;
    display: block;
}

textarea {
    font-size: 16px;
    font-family: 'Montserrat', sans-serif;
    line-height: 1.5;
    background-color: #ffffff;
    border: 1px solid #cccccc;
    padding: 10px;
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
    opacity: 0;
    transform: translateY(20px) scale(0.95);
    animation: popAndRoll 1.5s ease forwards;
}

@keyframes popAndRoll {
    0% {
        opacity: 0;
        transform: translateY(20px) scale(0.95) rotateX(20deg);
    }
    50% {
        opacity: 1;
        transform: translateY(0) scale(1.02) rotateX(0deg);
    }
    100% {
        opacity: 1;
        transform: translateY(0) scale(1);
    }
}

input, select, .gr-radio input[type="radio"] {
    font-family: 'Montserrat', sans-serif;
    font-size: 14px;
    padding: 5px;
    border-radius: 5px;
    border: 1px solid #cccccc;
    margin-bottom: 10px;
    background-color: #ffffff;
}

.gr-button {
    background-color: #6b9ac4;
    color: #ffffff !important;
    font-weight: 700;
    border: none;
    border-radius: 5px;
    padding: 10px 15px;
    cursor: pointer;
    font-family: 'Montserrat', sans-serif;
    transition: background-color 0.3s ease;
}

.gr-button:hover {
    background-color: #588bb0;
}

h1, h2, h3, h4, h5, h6 {
    font-family: 'Montserrat', sans-serif;
    color: #333333;
    margin-top: 0;
    text-transform: uppercase;
    letter-spacing: 1px;
}

.description, .title {
    font-family: 'Montserrat', sans-serif;
    color: #333333;
}

.description {
    margin-bottom: 20px;
    font-weight: 300;
}

.title {
    margin-bottom: 10px;
    font-weight: 700;
    font-size: 24px;
    letter-spacing: 2px;
    text-align: center;
}

footer {
    text-align: center;
    color: #888888;
    font-size: 12px;
    margin-top: 20px;
    font-family: 'Montserrat', sans-serif;
}
"""

interface = gr.Interface(
    fn=explain_advantages,
    inputs=[
        gr.Number(label="Electricity Consumption (kWh/100km)", value=15.0),
        gr.Textbox(label="Type of Car", value="Electric"),
        gr.Radio(choices=["Hybrid", "Electric"], label="Hybrid/Electric"),
        gr.Number(label="Range (km)", value=300.0),
        gr.Number(label="Estimated Daily Mileage (km)", value=50.0),
        gr.Number(label="Mileage from Travels (km/year)", value=1000.0),
    ],
    outputs=gr.Textbox(label="Advantages of Going Fully Electric", lines=10),
    title="Explaining the Advantages of Going Fully Electric",
    description="Enter your vehicle parameters to understand the benefits of switching to a fully electric vehicle.",
    css=custom_css
)

interface.launch()