Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,76 +1,111 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
-
from
|
5 |
-
import spaces
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
"""
|
10 |
-
Create the prompt for the EV Advisor based on user inputs.
|
11 |
-
"""
|
12 |
-
return (
|
13 |
-
f"Analyze the advantages of a {car_type} with the following parameters:\n"
|
14 |
-
f"- Electricity consumption: {electricity_consumption} kWh/100km\n"
|
15 |
-
f"- Range: {range_km} km\n"
|
16 |
-
f"- Daily mileage: {daily_mileage} km\n"
|
17 |
-
f"- Annual travel mileage: {travel_mileage} km\n"
|
18 |
-
f"- Vehicle type: {vehicle_choice}\n\n"
|
19 |
-
"Please calculate potential fuel cost savings, CO2 emissions reductions, "
|
20 |
-
"and highlight other advantages like maintenance costs and driving experience. "
|
21 |
-
"Use these assumptions:\n"
|
22 |
-
"- Electricity cost: 0.13 EUR/kWh\n"
|
23 |
-
"- Gasoline cost: 1.6 EUR/liter\n"
|
24 |
-
"- Average fuel economy for conventional vehicles: 25 mpg\n"
|
25 |
-
"- Average fuel economy for hybrids: 50 mpg\n\n"
|
26 |
-
"Provide a detailed report with calculations and actionable insights."
|
27 |
-
)
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
"""
|
32 |
-
Define and run the EV Advisor application GUI.
|
33 |
-
"""
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
)
|
56 |
-
|
57 |
-
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
}
|
68 |
|
69 |
-
#
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
|
76 |
-
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import logging
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
from huggingface_hub import spaces # Import spaces module
|
6 |
|
7 |
+
# Configure logging
|
8 |
+
logging.basicConfig(level=logging.INFO)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Model configuration
|
11 |
+
model_name_or_path = "Qwen/QwQ-32B-Preview"
|
|
|
|
|
|
|
12 |
|
13 |
+
# Initialize tokenizer and model variables
|
14 |
+
tokenizer = None
|
15 |
+
model = None
|
16 |
+
|
17 |
+
# Define the function to load the model with the @spaces.GPU decorator
|
18 |
+
@spaces.GPU()
|
19 |
+
def load_model():
|
20 |
+
global tokenizer, model
|
21 |
+
try:
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
23 |
+
model_name_or_path, use_fast=False, trust_remote_code=True
|
24 |
+
)
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
model_name_or_path,
|
27 |
+
torch_dtype=torch.float16,
|
28 |
+
device_map="auto",
|
29 |
+
trust_remote_code=True
|
30 |
+
)
|
31 |
+
logging.info("Model loaded successfully.")
|
32 |
+
except Exception as e:
|
33 |
+
logging.error(f"Failed to load model: {e}")
|
34 |
+
raise e
|
35 |
+
|
36 |
+
# Call the load_model function to load the model
|
37 |
+
load_model()
|
38 |
|
39 |
+
def explain_advantages(electricity_consumption, car_type, vehicle_choice, range_km, daily_mileage, travel_mileage):
|
40 |
+
logging.info("Function 'explain_advantages' called with inputs:")
|
41 |
+
logging.info(f"Electricity Consumption: {electricity_consumption}")
|
42 |
+
logging.info(f"Car Type: {car_type}")
|
43 |
+
logging.info(f"Vehicle Choice: {vehicle_choice}")
|
44 |
+
logging.info(f"Range (km): {range_km}")
|
45 |
+
logging.info(f"Daily Mileage (km): {daily_mileage}")
|
46 |
+
logging.info(f"Travel Mileage (km/year): {travel_mileage}")
|
|
|
47 |
|
48 |
+
# Input validation
|
49 |
+
try:
|
50 |
+
electricity_consumption = float(electricity_consumption)
|
51 |
+
range_km = float(range_km)
|
52 |
+
daily_mileage = float(daily_mileage)
|
53 |
+
travel_mileage = float(travel_mileage)
|
54 |
+
logging.info("Input conversion successful.")
|
55 |
+
except ValueError as ve:
|
56 |
+
logging.error(f"Input conversion error: {ve}")
|
57 |
+
return "Invalid input: Please enter numeric values for consumption, range, and mileage."
|
58 |
+
|
59 |
+
# Construct the prompt
|
60 |
+
prompt = (
|
61 |
+
f"Given a {car_type} with electricity consumption of {electricity_consumption} kWh/100km, "
|
62 |
+
f"a range of {range_km} km, daily mileage of {daily_mileage} km, and annual mileage of {travel_mileage} km, "
|
63 |
+
f"compare the benefits of choosing a {vehicle_choice} vehicle over a conventional vehicle. "
|
64 |
+
f"Calculate potential fuel cost savings, CO2 emissions savings, and highlight additional benefits such as maintenance costs and driving experience. "
|
65 |
+
f"Assume the average electricity cost is 0.13 EUR per kWh and gasoline cost is 1.6 EUR per liter. "
|
66 |
+
f"Consider the average fuel economy for conventional vehicles to be 25 mpg and for hybrids to be 50 mpg. "
|
67 |
+
f"Provide a convincing argument with derived figures to illustrate the advantages. "
|
68 |
+
f"Provide advice to optimize the benefits of the chosen vehicle based on the input figures."
|
69 |
)
|
70 |
+
logging.info("Prompt constructed successfully.")
|
71 |
+
|
72 |
+
# Prepare the input for the model
|
73 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
74 |
+
|
75 |
+
# Generate the response
|
76 |
+
try:
|
77 |
+
outputs = model.generate(
|
78 |
+
**inputs,
|
79 |
+
max_new_tokens=500,
|
80 |
+
temperature=0.7,
|
81 |
+
top_p=0.95,
|
82 |
+
repetition_penalty=1.0,
|
83 |
+
do_sample=True,
|
84 |
+
)
|
85 |
+
logging.info("Model generation successful.")
|
86 |
+
# Decode and post-process the generated text
|
87 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
88 |
+
response = generated_text[len(prompt):].strip()
|
89 |
+
return response
|
90 |
+
except Exception as e:
|
91 |
+
logging.error(f"Error during model generation: {e}")
|
92 |
+
return f"An error occurred while generating the response: {e}"
|
93 |
+
|
94 |
+
# Define the Gradio interface
|
95 |
+
iface = gr.Interface(
|
96 |
+
fn=explain_advantages,
|
97 |
+
inputs=[
|
98 |
+
gr.Number(label="Electricity Consumption (kWh/100km)", value=15.0),
|
99 |
+
gr.Textbox(label="Type of Car", value="Electric"),
|
100 |
+
gr.Radio(choices=["Hybrid", "Electric"], label="Hybrid/Electric"),
|
101 |
+
gr.Number(label="Range (km)", value=300.0),
|
102 |
+
gr.Number(label="Estimated Daily Mileage (km)", value=50.0),
|
103 |
+
gr.Number(label="Mileage from Travels (km/year)", value=1000.0),
|
104 |
+
],
|
105 |
+
outputs=gr.Textbox(label="Advantages of Going Fully Electric"),
|
106 |
+
title="Explaining the Advantages of Going Fully Electric",
|
107 |
+
description="Enter your vehicle's parameters to understand the benefits of switching to a fully electric vehicle.",
|
108 |
+
)
|
109 |
|
110 |
+
# Launch the app
|
111 |
+
iface.launch()
|