Spaces:
Running
Running
| <p align="center"> | |
| <br> | |
| <img src="images/title.png" width="900"/> | |
| <br> | |
| <a href="https://twitter.com/intent/tweet?text=Wow:&url=https%3A%2F%2Fgithub.com%2Fikergarcia1996%2FEasy-Translate"><img alt="Twitter" src="https://img.shields.io/twitter/url?style=social&url=https%3A%2F%2Fgithub.com%2Fikergarcia1996%2FEasy-Translate"></a> | |
| <a href="https://github.com/ikergarcia1996/Easy-Translate/blob/main/LICENSE.md"><img alt="License" src="https://img.shields.io/github/license/ikergarcia1996/Easy-Translate"></a> | |
| <a href="https://huggingface.co/docs/transformers/index"><img alt="Transformers" src="https://img.shields.io/badge/-%F0%9F%A4%97Transformers%20-grey"></a> | |
| <a href="https://huggingface.co/docs/accelerate/index/"><img alt="Accelerate" src="https://img.shields.io/badge/-%F0%9F%A4%97Accelerate%20-grey"></a> | |
| <a href="https://ikergarcia1996.github.io/Iker-Garcia-Ferrero/"><img alt="Author" src="https://img.shields.io/badge/Author-Iker García Ferrero-ff69b4"></a> | |
| <br> | |
| <br> | |
| </p> | |
| Easy-translate is a script for translating large text files in your machine using | |
| the [M2M100 models](https://arxiv.org/pdf/2010.11125.pdf) from Facebook/Meta AI. | |
| We also privide a [script](#evaluate-translations) for Easy-Evaluation of your translations 🥳 | |
| M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many multilingual translation. | |
| It was introduced in this [paper](https://arxiv.org/abs/2010.11125) and first released in [this](https://github.com/pytorch/fairseq/tree/master/examples/m2m_100) repository. | |
| The model that can directly translate between the 9,900 directions of 100 languages. | |
| Easy-Translate is built on top of 🤗HuggingFace's | |
| [Transformers](https://huggingface.co/docs/transformers/index) and | |
| 🤗HuggingFace's [Accelerate](https://huggingface.co/docs/accelerate/index) library. | |
| We support: | |
| * CPU / multi-CPU / GPU / multi-GPU / TPU acceleration | |
| * BF16 / FP16 / FP32 precision. | |
| * Automatic batch size finder: Forget CUDA OOM errors. Set an initial batch size, if it doesn't fit, we will automatically adjust it. | |
| * Sharded Data Parallel to load huge models sharded on multiple GPUs (See: https://huggingface.co/docs/accelerate/fsdp). | |
| Test the 🔌 Online Demo here: https://huggingface.co/spaces/Iker/Translate-100-languages | |
| ## Supported languages | |
| See the [Supported languages table](supported_languages.md) for a table of the supported languages and their ids. | |
| **List of supported languages:** | |
| Afrikaans, Amharic, Arabic, Asturian, Azerbaijani, Bashkir, Belarusian, Bulgarian, Bengali, Breton, Bosnian, Catalan, Cebuano, Czech, Welsh, Danish, German, Greeek, English, Spanish, Estonian, Persian, Fulah, Finnish, French, WesternFrisian, Irish, Gaelic, Galician, Gujarati, Hausa, Hebrew, Hindi, Croatian, Haitian, Hungarian, Armenian, Indonesian, Igbo, Iloko, Icelandic, Italian, Japanese, Javanese, Georgian, Kazakh, CentralKhmer, Kannada, Korean, Luxembourgish, Ganda, Lingala, Lao, Lithuanian, Latvian, Malagasy, Macedonian, Malayalam, Mongolian, Marathi, Malay, Burmese, Nepali, Dutch, Norwegian, NorthernSotho, Occitan, Oriya, Panjabi, Polish, Pushto, Portuguese, Romanian, Russian, Sindhi, Sinhala, Slovak, Slovenian, Somali, Albanian, Serbian, Swati, Sundanese, Swedish, Swahili, Tamil, Thai, Tagalog, Tswana, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Wolof, Xhosa, Yiddish, Yoruba, Chinese, Zulu | |
| ## Supported Models | |
| * **Facebook/m2m100_418M**: https://huggingface.co/facebook/m2m100_418M | |
| * **Facebook/m2m100_1.2B**: https://huggingface.co/facebook/m2m100_1.2B | |
| * **Facebook/m2m100_12B**: https://huggingface.co/facebook/m2m100-12B-avg-5-ckpt | |
| * Any other m2m100 model from HuggingFace's Hub: https://huggingface.co/models?search=m2m100 | |
| ## Requirements: | |
| ``` | |
| Pytorch >= 1.10.0 | |
| See: https://pytorch.org/get-started/locally/ | |
| Accelerate >= 0.7.1 | |
| pip install --upgrade accelerate | |
| HuggingFace Transformers | |
| pip install --upgrade transformers | |
| ``` | |
| ## Translate a file | |
| Run `python translate.py -h` for more info. | |
| #### Using a single CPU / GPU: | |
| ```bash | |
| accelerate launch translate.py \ | |
| --sentences_path sample_text/en.txt \ | |
| --output_path sample_text/en2es.translation.m2m100_1.2B.txt \ | |
| --source_lang en \ | |
| --target_lang es \ | |
| --model_name facebook/m2m100_1.2B | |
| ``` | |
| #### Multi-GPU: | |
| See Accelerate documentation for more information (multi-node, TPU, Sharded model...): https://huggingface.co/docs/accelerate/index | |
| You can use the Accelerate CLI to configure the Accelerate environment (Run | |
| `accelerate config` in your terminal) instead of using the | |
| `--multi_gpu and --num_processes` flags. | |
| ```bash | |
| accelerate launch --multi_gpu --num_processes 2 --num_machines 1 translate.py \ | |
| --sentences_path sample_text/en.txt \ | |
| --output_path sample_text/en2es.translation.m2m100_1.2B.txt \ | |
| --source_lang en \ | |
| --target_lang es \ | |
| --model_name facebook/m2m100_1.2B | |
| ``` | |
| #### Automatic batch size finder: | |
| We will automatically find a batch size that fits in your GPU memory. | |
| The default initial batch size is 128 (You can set it with the `--starting_batch_size 128` flag). | |
| If we find an Out Of Memory error, we will automatically decrease the batch size until we find a working one. | |
| #### Choose precision: | |
| Use the `--precision` flag to choose the precision of the model. You can choose between: bf16, fp16 and 32. | |
| ```bash | |
| accelerate launch translate.py \ | |
| --sentences_path sample_text/en.txt \ | |
| --output_path sample_text/en2es.translation.m2m100_1.2B.txt \ | |
| --source_lang en \ | |
| --target_lang es \ | |
| --model_name facebook/m2m100_1.2B \ | |
| --precision fp16 | |
| ``` | |
| ## Evaluate translations | |
| To run the evaluation script you need to install [bert_score](https://github.com/Tiiiger/bert_score): `pip install bert_score` | |
| The evaluation script will calculate the following metrics: | |
| * [SacreBLEU](https://github.com/huggingface/datasets/tree/master/metrics/sacrebleu) | |
| * [BLEU](https://github.com/huggingface/datasets/tree/master/metrics/bleu) | |
| * [ROUGE](https://github.com/huggingface/datasets/tree/master/metrics/rouge) | |
| * [METEOR](https://github.com/huggingface/datasets/tree/master/metrics/meteor) | |
| * [TER](https://github.com/huggingface/datasets/tree/master/metrics/ter) | |
| * [BertScore](https://github.com/huggingface/datasets/tree/master/metrics/bertscore) | |
| Run the following command to evaluate the translations: | |
| ```bash | |
| accelerate launch eval.py \ | |
| --pred_path sample_text/es.txt \ | |
| --gold_path sample_text/en2es.translation.m2m100_1.2B.txt | |
| ``` | |
| If you want to save the results to a file use the `--output_path` flag. | |