Spaces:
Running
Running
import torch | |
import tqdm | |
import numpy as np | |
import nltk | |
from utils import DEVICE, FeatureExtractor, HWT, MGT | |
from roberta_model_loader import roberta_model | |
from meta_train import net | |
from data_loader import load_HC3, filter_data | |
feature_extractor = FeatureExtractor(roberta_model, net) | |
target = HWT | |
# load target data | |
data_o = load_HC3() | |
data = filter_data(data_o) | |
data = data[target] | |
# print(data[:3]) | |
# split with nltk | |
nltk.download("punkt", quiet=True) | |
nltk.download("punkt_tab", quiet=True) | |
paragraphs = [nltk.sent_tokenize(paragraph)[1:-1] for paragraph in data] | |
data = [sent for paragraph in paragraphs for sent in paragraph if 5 < len(sent.split())] | |
# print(data[:3]) | |
# extract features | |
feature_ref = [] | |
for i in tqdm.tqdm(range(2000), desc=f"Generating feature ref for {target}"): | |
feature_ref.append( | |
feature_extractor.process(data[i], False).detach() | |
) # detach to save memory | |
torch.save(torch.cat(feature_ref, dim=0), f"feature_ref_{target}.pt") | |