Spaces:
Running
Running
Create feature_ref_generater.py
Browse files- feature_ref_generater.py +35 -0
feature_ref_generater.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import tqdm
|
3 |
+
import numpy as np
|
4 |
+
import nltk
|
5 |
+
|
6 |
+
from utils import DEVICE, FeatureExtractor, HWT, MGT
|
7 |
+
from roberta_model_loader import roberta_model
|
8 |
+
from meta_train import net
|
9 |
+
from data_loader import load_HC3, filter_data
|
10 |
+
|
11 |
+
|
12 |
+
feature_extractor = FeatureExtractor(roberta_model, net)
|
13 |
+
|
14 |
+
target = HWT
|
15 |
+
|
16 |
+
# load target data
|
17 |
+
data_o = load_HC3()
|
18 |
+
data = filter_data(data_o)
|
19 |
+
data = data[target]
|
20 |
+
# print(data[:3])
|
21 |
+
|
22 |
+
# split with nltk
|
23 |
+
nltk.download("punkt", quiet=True)
|
24 |
+
nltk.download("punkt_tab", quiet=True)
|
25 |
+
paragraphs = [nltk.sent_tokenize(paragraph)[1:-1] for paragraph in data]
|
26 |
+
data = [sent for paragraph in paragraphs for sent in paragraph if 5 < len(sent.split())]
|
27 |
+
# print(data[:3])
|
28 |
+
|
29 |
+
# extract features
|
30 |
+
feature_ref = []
|
31 |
+
for i in tqdm.tqdm(range(2000), desc=f"Generating feature ref for {target}"):
|
32 |
+
feature_ref.append(
|
33 |
+
feature_extractor.process(data[i], False).detach()
|
34 |
+
) # detach to save memory
|
35 |
+
torch.save(torch.cat(feature_ref, dim=0), f"feature_ref_{target}.pt")
|