De-limiter / eval_delimit /score_features.py
jeonchangbin49's picture
first commit
a00b67a
import os
import argparse
import csv
import json
import glob
from typing import Any, Optional, Union, Collection
import tqdm
import numpy as np
import librosa
from librosa.core.spectrum import _spectrogram
import musdb
import essentia
import essentia.standard
import pyloudnorm as pyln
from utils import str2bool, db2linear
def spectral_crest(
*,
y: Optional[np.ndarray] = None,
S: Optional[np.ndarray] = None,
n_fft: int = 2048,
hop_length: int = 512,
win_length: Optional[int] = None,
window: str = "hann",
center: bool = True,
pad_mode: str = "constant",
amin: float = 1e-10,
power: float = 2.0,
) -> np.ndarray:
"""Compute spectral crest
Spectral crest (or tonality coefficient) is a measure of
the ratio of the maximum of the spectrum to the arithmetic mean of the spectrum
A higher spectral crest => more tonality,
A lower spectral crest => more noisy.
Parameters
----------
y : np.ndarray [shape=(..., n)] or None
audio time series. Multi-channel is supported.
S : np.ndarray [shape=(..., d, t)] or None
(optional) pre-computed spectrogram magnitude
n_fft : int > 0 [scalar]
FFT window size
hop_length : int > 0 [scalar]
hop length for STFT. See `librosa.stft` for details.
win_length : int <= n_fft [scalar]
Each frame of audio is windowed by `window()`.
The window will be of length `win_length` and then padded
with zeros to match ``n_fft``.
If unspecified, defaults to ``win_length = n_fft``.
window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)]
- a window specification (string, tuple, or number);
see `scipy.signal.get_window`
- a window function, such as `scipy.signal.windows.hann`
- a vector or array of length ``n_fft``
.. see also:: `librosa.filters.get_window`
center : boolean
- If `True`, the signal ``y`` is padded so that frame
``t`` is centered at ``y[t * hop_length]``.
- If `False`, then frame `t` begins at ``y[t * hop_length]``
pad_mode : string
If ``center=True``, the padding mode to use at the edges of the signal.
By default, STFT uses zero padding.
amin : float > 0 [scalar]
minimum threshold for ``S`` (=added noise floor for numerical stability)
power : float > 0 [scalar]
Exponent for the magnitude spectrogram.
e.g., 1 for energy, 2 for power, etc.
Power spectrogram is usually used for computing spectral flatness.
Returns
-------
crest : np.ndarray [shape=(..., 1, t)]
spectral crest for each frame.
"""
S, n_fft = _spectrogram(
y=y,
S=S,
n_fft=n_fft,
hop_length=hop_length,
power=1.0,
win_length=win_length,
window=window,
center=center,
pad_mode=pad_mode,
)
S_thresh = np.maximum(amin, S**power)
# gmean = np.exp(np.mean(np.log(S_thresh), axis=-2, keepdims=True))
gmax = np.max(S_thresh, axis=-2, keepdims=True)
amean = np.mean(S_thresh, axis=-2, keepdims=True)
crest: np.ndarray = gmax / amean
return crest
parser = argparse.ArgumentParser(description="model test.py")
parser.add_argument(
"--target",
type=str,
default="all",
help="target source. all, vocals, drums, bass, other",
)
parser.add_argument(
"--root", type=str, default="/path/to/musdb18hq_loudnorm"
)
parser.add_argument("--exp_name", type=str, default="delimit_6_s")
parser.add_argument(
"--output_directory",
type=str,
default="/path/to/results",
)
parser.add_argument(
"--calc_results",
type=str2bool,
default=True,
help="calculate results or musdb-hq or musdb-XL test dataset",
)
args, _ = parser.parse_known_args()
args.sample_rate = 44100
args.test_output_dir = f"{args.output_directory}/test/{args.exp_name}"
if args.calc_results:
track_list = glob.glob(
f"{args.output_directory}/test/{args.exp_name}/*/{args.target}.wav"
)
else:
if args.target == "all":
track_list = glob.glob(f"{args.root}/*/mixture.wav")
else:
track_list = glob.glob(f"{args.root}/*/{args.target}.wav")
i = 0
dynamic_complexity = essentia.standard.DynamicComplexity()
loudness_range = essentia.standard.LoudnessEBUR128()
spectral_centroid = essentia.standard.SpectralCentroidTime()
crest = essentia.standard.Crest()
dynamic_spread = essentia.standard.DistributionShape()
central_moments = essentia.standard.CentralMoments()
dict_song_score = {}
list_rms = []
list_crest_factor = []
list_dc_score = []
list_lra_score = []
list_sc_hertz = []
list_sf_score = []
list_spectral_crest_score = []
for track in tqdm.tqdm(track_list):
audio_name = os.path.basename(os.path.dirname(track))
gt_source_librosa = librosa.load(f"{track}", sr=args.sample_rate, mono=False)[
0
] # (nb_channels, nb_samples)
gt_source_librosa_mono = librosa.to_mono(gt_source_librosa) # (nb_samples)
gt_source_essentia = essentia.standard.AudioLoader(filename=f"{track}")()[
0
] # (nb_samples, nb_channels)
gt_source_essentia_cat = np.concatenate(
[gt_source_essentia[:, 0], gt_source_essentia[:, 1]]
) # (nb_samples * nb_channels)
gt_source_essentia_mono = np.mean(gt_source_essentia, axis=1) # (nb_samples)
rms = np.sqrt(np.mean(gt_source_essentia_cat**2))
crest_factor = np.max(np.abs(gt_source_essentia_cat)) / rms
dc_score, _ = dynamic_complexity(gt_source_essentia_mono)
_, _, _, lra_score = loudness_range(gt_source_essentia)
sc_hertz = spectral_centroid(gt_source_essentia_mono)
sf_score = np.mean(librosa.feature.spectral_flatness(gt_source_librosa_mono))
spectral_crest_score = np.mean(spectral_crest(y=gt_source_librosa_mono))
dict_song_score[audio_name] = {
"rms": float(rms),
"crest_factor": float(crest_factor),
"dynamic_complexity_score": float(dc_score),
"lra_score": float(lra_score),
"spectral_centroid_hertz": float(sc_hertz),
"spectral_flatness_score": float(sf_score),
"spectral_crest_score": float(spectral_crest_score),
}
list_rms.append(rms)
list_crest_factor.append(crest_factor)
list_dc_score.append(dc_score)
list_lra_score.append(lra_score)
list_sc_hertz.append(sc_hertz)
list_sf_score.append(sf_score)
list_spectral_crest_score.append(spectral_crest_score)
i += 1
if args.calc_results:
print(f"{args.exp_name} on {args.target}")
else:
print(f"{os.path.basename(args.root)} on {args.target}")
print(f"rms: {np.mean(list_rms)}")
print(f"crest_factor: {np.mean(list_crest_factor)}")
print(f"dynamic_complexity_score: {np.mean(list_dc_score)}")
print(f"lra_score: {np.mean(list_lra_score)}")
print(f"sc_hertz: {np.mean(list_sc_hertz)}")
print(f"sf_score: {np.mean(list_sf_score)}")
print(f"spectral_crest_score: {np.mean(list_spectral_crest_score)}")
# save dict_song_score to json file
if args.target == "all":
file_name = "score_features"
else:
file_name = f"score_feature_{args.target}"
if args.calc_results:
with open(
f"{args.output_directory}/test/{args.exp_name}/{file_name}.json", "w"
) as f:
json.dump(dict_song_score, f, indent=4)
else:
with open(f"{args.root}/{file_name}.json", "w") as f:
json.dump(dict_song_score, f, indent=4)