File size: 7,419 Bytes
a00b67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import argparse
import csv
import json
import glob
from typing import Any, Optional, Union, Collection

import tqdm
import numpy as np
import librosa
from librosa.core.spectrum import _spectrogram
import musdb
import essentia
import essentia.standard
import pyloudnorm as pyln

from utils import str2bool, db2linear


def spectral_crest(
    *,
    y: Optional[np.ndarray] = None,
    S: Optional[np.ndarray] = None,
    n_fft: int = 2048,
    hop_length: int = 512,
    win_length: Optional[int] = None,
    window: str = "hann",
    center: bool = True,
    pad_mode: str = "constant",
    amin: float = 1e-10,
    power: float = 2.0,
) -> np.ndarray:
    """Compute spectral crest

    Spectral crest (or tonality coefficient) is a measure of
    the ratio of the maximum of the spectrum to the arithmetic mean of the spectrum

    A higher spectral crest => more tonality,
    A lower spectral crest => more noisy.


    Parameters
    ----------
    y : np.ndarray [shape=(..., n)] or None
        audio time series. Multi-channel is supported.
    S : np.ndarray [shape=(..., d, t)] or None
        (optional) pre-computed spectrogram magnitude
    n_fft : int > 0 [scalar]
        FFT window size
    hop_length : int > 0 [scalar]
        hop length for STFT. See `librosa.stft` for details.
    win_length : int <= n_fft [scalar]
        Each frame of audio is windowed by `window()`.
        The window will be of length `win_length` and then padded
        with zeros to match ``n_fft``.
        If unspecified, defaults to ``win_length = n_fft``.
    window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)]
        - a window specification (string, tuple, or number);
          see `scipy.signal.get_window`
        - a window function, such as `scipy.signal.windows.hann`
        - a vector or array of length ``n_fft``
        .. see also:: `librosa.filters.get_window`
    center : boolean
        - If `True`, the signal ``y`` is padded so that frame
          ``t`` is centered at ``y[t * hop_length]``.
        - If `False`, then frame `t` begins at ``y[t * hop_length]``
    pad_mode : string
        If ``center=True``, the padding mode to use at the edges of the signal.
        By default, STFT uses zero padding.
    amin : float > 0 [scalar]
        minimum threshold for ``S`` (=added noise floor for numerical stability)
    power : float > 0 [scalar]
        Exponent for the magnitude spectrogram.
        e.g., 1 for energy, 2 for power, etc.
        Power spectrogram is usually used for computing spectral flatness.

    Returns
    -------
    crest : np.ndarray [shape=(..., 1, t)]
        spectral crest for each frame.


    """

    S, n_fft = _spectrogram(
        y=y,
        S=S,
        n_fft=n_fft,
        hop_length=hop_length,
        power=1.0,
        win_length=win_length,
        window=window,
        center=center,
        pad_mode=pad_mode,
    )

    S_thresh = np.maximum(amin, S**power)
    # gmean = np.exp(np.mean(np.log(S_thresh), axis=-2, keepdims=True))
    gmax = np.max(S_thresh, axis=-2, keepdims=True)
    amean = np.mean(S_thresh, axis=-2, keepdims=True)
    crest: np.ndarray = gmax / amean
    return crest


parser = argparse.ArgumentParser(description="model test.py")

parser.add_argument(
    "--target",
    type=str,
    default="all",
    help="target source. all, vocals, drums, bass, other",
)
parser.add_argument(
    "--root", type=str, default="/path/to/musdb18hq_loudnorm"
)
parser.add_argument("--exp_name", type=str, default="delimit_6_s")
parser.add_argument(
    "--output_directory",
    type=str,
    default="/path/to/results",
)
parser.add_argument(
    "--calc_results",
    type=str2bool,
    default=True,
    help="calculate results or musdb-hq or musdb-XL test dataset",
)


args, _ = parser.parse_known_args()

args.sample_rate = 44100

args.test_output_dir = f"{args.output_directory}/test/{args.exp_name}"

if args.calc_results:
    track_list = glob.glob(
        f"{args.output_directory}/test/{args.exp_name}/*/{args.target}.wav"
    )
else:
    if args.target == "all":
        track_list = glob.glob(f"{args.root}/*/mixture.wav")
    else:
        track_list = glob.glob(f"{args.root}/*/{args.target}.wav")

i = 0


dynamic_complexity = essentia.standard.DynamicComplexity()
loudness_range = essentia.standard.LoudnessEBUR128()
spectral_centroid = essentia.standard.SpectralCentroidTime()
crest = essentia.standard.Crest()
dynamic_spread = essentia.standard.DistributionShape()
central_moments = essentia.standard.CentralMoments()

dict_song_score = {}
list_rms = []
list_crest_factor = []
list_dc_score = []
list_lra_score = []
list_sc_hertz = []
list_sf_score = []
list_spectral_crest_score = []

for track in tqdm.tqdm(track_list):
    audio_name = os.path.basename(os.path.dirname(track))
    gt_source_librosa = librosa.load(f"{track}", sr=args.sample_rate, mono=False)[
        0
    ]  # (nb_channels, nb_samples)
    gt_source_librosa_mono = librosa.to_mono(gt_source_librosa)  # (nb_samples)

    gt_source_essentia = essentia.standard.AudioLoader(filename=f"{track}")()[
        0
    ]  # (nb_samples, nb_channels)
    gt_source_essentia_cat = np.concatenate(
        [gt_source_essentia[:, 0], gt_source_essentia[:, 1]]
    )  # (nb_samples * nb_channels)
    gt_source_essentia_mono = np.mean(gt_source_essentia, axis=1)  # (nb_samples)

    rms = np.sqrt(np.mean(gt_source_essentia_cat**2))
    crest_factor = np.max(np.abs(gt_source_essentia_cat)) / rms

    dc_score, _ = dynamic_complexity(gt_source_essentia_mono)
    _, _, _, lra_score = loudness_range(gt_source_essentia)
    sc_hertz = spectral_centroid(gt_source_essentia_mono)
    sf_score = np.mean(librosa.feature.spectral_flatness(gt_source_librosa_mono))
    spectral_crest_score = np.mean(spectral_crest(y=gt_source_librosa_mono))

    dict_song_score[audio_name] = {
        "rms": float(rms),
        "crest_factor": float(crest_factor),
        "dynamic_complexity_score": float(dc_score),
        "lra_score": float(lra_score),
        "spectral_centroid_hertz": float(sc_hertz),
        "spectral_flatness_score": float(sf_score),
        "spectral_crest_score": float(spectral_crest_score),
    }
    list_rms.append(rms)
    list_crest_factor.append(crest_factor)
    list_dc_score.append(dc_score)
    list_lra_score.append(lra_score)
    list_sc_hertz.append(sc_hertz)
    list_sf_score.append(sf_score)
    list_spectral_crest_score.append(spectral_crest_score)

    i += 1

if args.calc_results:
    print(f"{args.exp_name} on {args.target}")
else:
    print(f"{os.path.basename(args.root)} on {args.target}")
print(f"rms: {np.mean(list_rms)}")
print(f"crest_factor: {np.mean(list_crest_factor)}")
print(f"dynamic_complexity_score: {np.mean(list_dc_score)}")
print(f"lra_score: {np.mean(list_lra_score)}")
print(f"sc_hertz: {np.mean(list_sc_hertz)}")
print(f"sf_score: {np.mean(list_sf_score)}")
print(f"spectral_crest_score: {np.mean(list_spectral_crest_score)}")


# save dict_song_score to json file
if args.target == "all":
    file_name = "score_features"
else:
    file_name = f"score_feature_{args.target}"
if args.calc_results:
    with open(
        f"{args.output_directory}/test/{args.exp_name}/{file_name}.json", "w"
    ) as f:
        json.dump(dict_song_score, f, indent=4)
else:
    with open(f"{args.root}/{file_name}.json", "w") as f:
        json.dump(dict_song_score, f, indent=4)