De-limiter / dataloader /delimit_dataset.py
jeonchangbin49's picture
weight, gradio version, mono input
68b4dbd
import os
import random
from typing import Optional, Callable
import json
import glob
import csv
import numpy as np
import torch
import librosa
import pyloudnorm as pyln
from pedalboard import Pedalboard, Limiter, Gain, Compressor, Clipping
from .dataset import (
MusdbTrainDataset,
MusdbValidDataset,
apply_limitaug,
# apply_limitaug_loudnorm,
)
from utils import (
load_wav_arbitrary_position_stereo,
load_wav_specific_position_stereo,
db2linear,
str2bool,
)
class DelimitTrainDataset(MusdbTrainDataset):
def __init__(
self,
target: str = "all",
root: str = None,
seq_duration: Optional[float] = 6.0,
samples_per_track: int = 64,
source_augmentations: Optional[Callable] = lambda audio: audio,
sample_rate: int = 44100,
seed: int = 42,
limitaug_method: str = "limitaug",
limitaug_mode: str = "normal_L",
limitaug_custom_target_lufs: float = None,
limitaug_custom_target_lufs_std: float = None,
target_loudnorm_lufs: float = -14.0,
target_limitaug_mode: str = None,
target_limitaug_custom_target_lufs: float = None,
target_limitaug_custom_target_lufs_std: float = None,
custom_limiter_attack_range: list = [2.0, 2.0],
custom_limiter_release_range: list = [200.0, 200.0],
*args,
**kwargs,
) -> None:
super().__init__(
target=target,
root=root,
seq_duration=seq_duration,
samples_per_track=samples_per_track,
source_augmentations=source_augmentations,
sample_rate=sample_rate,
seed=seed,
limitaug_method=limitaug_method,
limitaug_mode=limitaug_mode,
limitaug_custom_target_lufs=limitaug_custom_target_lufs,
limitaug_custom_target_lufs_std=limitaug_custom_target_lufs_std,
target_loudnorm_lufs=target_loudnorm_lufs,
custom_limiter_attack_range=custom_limiter_attack_range,
custom_limiter_release_range=custom_limiter_release_range,
*args,
**kwargs,
)
self.target_limitaug_mode = target_limitaug_mode
self.target_limitaug_custom_target_lufs = (target_limitaug_custom_target_lufs,)
self.target_limitaug_custom_target_lufs_std = (
target_limitaug_custom_target_lufs_std,
)
self.limitaug_mode_statistics["target_custom"] = [
target_limitaug_custom_target_lufs,
target_limitaug_custom_target_lufs_std,
]
"""
Parameters
----------
limitaug_method : str
choose from ["linear_gain_increase", "limitaug", "limitaug_then_loudnorm", "only_loudnorm"]
limitaug_mode : str
choose from ["uniform", "normal", "normal_L", "normal_XL", "normal_short_term", "normal_L_short_term", "normal_XL_short_term", "custom"]
limitaug_custom_target_lufs : float
valid only when
limitaug_mode == "custom"
target_loudnorm_lufs : float
valid only when
limitaug_method == 'limitaug_then_loudnorm' or 'only_loudnorm'
default is -14.
To the best of my knowledge, Spotify and Youtube music is using -14 as a reference loudness normalization level.
No special reason for the choice of -14 as target_loudnorm_lufs.
target : str
target name of the source to be separated, defaults to ``vocals``.
root : str
root path of MUSDB
seq_duration : float
training is performed in chunks of ``seq_duration`` (in seconds,
defaults to ``None`` which loads the full audio track
samples_per_track : int
sets the number of samples, yielded from each track per epoch.
Defaults to 64
source_augmentations : list[callables]
provide list of augmentation function that take a multi-channel
audio file of shape (src, samples) as input and output. Defaults to
no-augmentations (input = output)
seed : int
control randomness of dataset iterations
args, kwargs : additional keyword arguments
used to add further control for the musdb dataset
initialization function.
"""
# Get a limitaug result without target (individual stem source)
def get_limitaug_mixture(self, mixture):
if self.limitaug_method == "limitaug":
self.board[1].release_ms = random.uniform(30.0, 200.0)
target_lufs = self.sample_target_lufs()
mixture_limited, mixture_lufs = apply_limitaug(
mixture,
self.board,
self.meter,
self.sample_rate,
target_lufs=target_lufs,
)
elif self.limitaug_method == "limitaug_then_loudnorm":
self.board[1].release_ms = random.uniform(30.0, 200.0)
target_lufs = self.sample_target_lufs()
mixture_limited, mixture_lufs = (
apply_limitaug(
mixture,
self.board,
self.meter,
self.sample_rate,
target_lufs=target_lufs,
target_loudnorm_lufs=self.target_loudnorm_lufs,
),
)
# Apply LimitAug using Custom Limiter
elif self.limitaug_method == "custom_limiter_limitaug":
# Change attack time of First compressor of the Limiter
self.board[1].attack_ms = random.uniform(
self.custom_limiter_attack_range[0], self.custom_limiter_attack_range[1]
)
# Change release time of First compressor of the Limiter
self.board[1].release_ms = random.uniform(
self.custom_limiter_release_range[0],
self.custom_limiter_release_range[1],
)
# Change release time of Second compressor of the Limiter
self.board[2].release_ms = random.uniform(30.0, 200.0)
target_lufs = self.sample_target_lufs()
mixture_limited, mixture_lufs = apply_limitaug(
mixture,
self.board,
self.meter,
self.sample_rate,
target_lufs=target_lufs,
target_loudnorm_lufs=self.target_loudnorm_lufs,
)
# When we want to force NN to output an appropriately compressed target output
if self.target_limitaug_mode:
mixture_target_lufs = random.gauss(
self.limitaug_mode_statistics[self.target_limitaug_mode][0],
self.limitaug_mode_statistics[self.target_limitaug_mode][1],
)
mixture, target_lufs = apply_limitaug(
mixture,
self.board,
self.meter,
self.sample_rate,
target_lufs=mixture_target_lufs,
loudness=mixture_lufs,
)
if np.isinf(mixture_lufs):
mixture_loudnorm = mixture
else:
augmented_gain = self.target_loudnorm_lufs - mixture_lufs
mixture_loudnorm = mixture * db2linear(augmented_gain, eps=0.0)
return mixture_limited, mixture_loudnorm
def __getitem__(self, index):
audio_sources = []
for k, source in enumerate(self.sources):
# memorize index of target source
if source == self.target: # if source is 'vocals'
track_path = self.train_list[
index // self.samples_per_track
] # we want to use # training samples per each track.
audio_path = f"{track_path}/{source}.wav"
audio = load_wav_arbitrary_position_stereo(
audio_path, self.sample_rate, self.seq_duration
)
else:
track_path = random.choice(self.train_list)
audio_path = f"{track_path}/{source}.wav"
audio = load_wav_arbitrary_position_stereo(
audio_path, self.sample_rate, self.seq_duration
)
audio = self.source_augmentations(audio)
audio_sources.append(audio)
stems = np.stack(audio_sources, axis=0)
# apply linear mix over source index=0
# and here, linear mixture is a target unlike in MusdbTrainDataset
mixture = stems.sum(0)
# target_lufs = self.sample_target_lufs()
mixture_limited, mixture_loudnorm = self.get_limitaug_mixture(mixture)
# # We will give mixture_limited as an input and mixture_loudnorm as a target to the model.
mixture_limited = np.clip(mixture_limited, -1.0, 1.0)
mixture_limited = torch.as_tensor(mixture_limited, dtype=torch.float32)
mixture_loudnorm = torch.as_tensor(mixture_loudnorm, dtype=torch.float32)
return mixture_limited, mixture_loudnorm
class OzoneTrainDataset(DelimitTrainDataset):
def __init__(
self,
target: str = "all",
root: str = None,
ozone_root: str = None,
use_fixed: float = 0.1, # ratio of fixed samples
seq_duration: Optional[float] = 6.0,
samples_per_track: int = 64,
source_augmentations: Optional[Callable] = lambda audio: audio,
sample_rate: int = 44100,
seed: int = 42,
limitaug_method: str = "limitaug",
limitaug_mode: str = "normal_L",
limitaug_custom_target_lufs: float = None,
limitaug_custom_target_lufs_std: float = None,
target_loudnorm_lufs: float = -14.0,
target_limitaug_mode: str = None,
target_limitaug_custom_target_lufs: float = None,
target_limitaug_custom_target_lufs_std: float = None,
custom_limiter_attack_range: list = [2.0, 2.0],
custom_limiter_release_range: list = [200.0, 200.0],
*args,
**kwargs,
) -> None:
super().__init__(
target,
root,
seq_duration,
samples_per_track,
source_augmentations,
sample_rate,
seed,
limitaug_method,
limitaug_mode,
limitaug_custom_target_lufs,
limitaug_custom_target_lufs_std,
target_loudnorm_lufs,
target_limitaug_mode,
target_limitaug_custom_target_lufs,
target_limitaug_custom_target_lufs_std,
custom_limiter_attack_range,
custom_limiter_release_range,
*args,
**kwargs,
)
self.ozone_root = ozone_root
self.use_fixed = use_fixed
self.list_train_fixed = glob.glob(f"{self.ozone_root}/ozone_train_fixed/*.wav")
# self.list_train_random = glob.glob(
# f"{self.ozone_root}/ozone_train_random/*.wav"
# )
# self.dict_train_random = {}
self.list_dict_train_random = []
# Load information of pre-generated random training examples
list_csv_files = glob.glob(f"{self.ozone_root}/ozone_train_random_*.csv")
list_csv_files.sort()
for csv_file in list_csv_files:
with open(csv_file, "r") as f:
reader = csv.reader(f)
next(reader)
for row in reader:
self.list_dict_train_random.append(
{
row[0]: {
"max_threshold": float(row[1]),
"max_character": float(row[2]),
"vocals": {
"name": row[3],
"start_sec": float(row[4]),
"gain": float(row[5]),
"channelswap": str2bool(row[6]),
},
"bass": {
"name": row[7],
"start_sec": float(row[8]),
"gain": float(row[9]),
"channelswap": str2bool(row[10]),
},
"drums": {
"name": row[11],
"start_sec": float(row[12]),
"gain": float(row[13]),
"channelswap": str2bool(row[14]),
},
"other": {
"name": row[15],
"start_sec": float(row[16]),
"gain": float(row[17]),
"channelswap": str2bool(row[18]),
},
}
}
)
# self.dict_train_random[row[0]] = {
# "max_threshold": float(row[1]),
# "max_character": float(row[2]),
# "vocals": {
# "name": row[3],
# "start_sec": float(row[4]),
# "gain": float(row[5]),
# "channelswap": str2bool(row[6]),
# },
# "bass": {
# "name": row[7],
# "start_sec": float(row[8]),
# "gain": float(row[9]),
# "channelswap": str2bool(row[10]),
# },
# "drums": {
# "name": row[11],
# "start_sec": float(row[12]),
# "gain": float(row[13]),
# "channelswap": str2bool(row[14]),
# },
# "other": {
# "name": row[15],
# "start_sec": float(row[16]),
# "gain": float(row[17]),
# "channelswap": str2bool(row[18]),
# },
# }
def __getitem__(self, idx):
use_fixed_prob = random.random()
if use_fixed_prob <= self.use_fixed:
# Fixed examples
audio_path = random.choice(self.list_train_fixed)
song_name = os.path.basename(audio_path).replace(".wav", "")
mixture_limited, start_pos_sec = load_wav_arbitrary_position_stereo(
audio_path, self.sample_rate, self.seq_duration, return_pos=True
)
audio_sources = []
track_path = f"{self.root}/train/{song_name}"
for source in self.sources:
audio_path = f"{track_path}/{source}.wav"
audio = load_wav_specific_position_stereo(
audio_path,
self.sample_rate,
self.seq_duration,
start_position=start_pos_sec,
)
audio_sources.append(audio)
else:
# Random examples
# Load mixture_limited (pre-generated)
# audio_path = random.choice(self.list_train_random)
dict_seg = random.choice(self.list_dict_train_random)
seg_name = list(dict_seg.keys())[0]
audio_path = f"{self.ozone_root}/ozone_train_random/{seg_name}.wav"
dict_seg_info = dict_seg[seg_name]
# seg_name = os.path.basename(audio_path).replace(".wav", "")
mixture_limited, sr = librosa.load(
audio_path, sr=self.sample_rate, mono=False
)
# Load mixture_unlimited (from the original musdb18, using metadata)
audio_sources = []
# dict_seg_info = self.dict_train_random[seg_name]
for source in self.sources:
# dict_seg_info = self.dict_train_random[seg_name]
dict_seg_source_info = dict_seg_info[source]
audio_path = (
f"{self.root}/train/{dict_seg_source_info['name']}/{source}.wav"
)
audio = load_wav_specific_position_stereo(
audio_path,
self.sample_rate,
self.seq_duration,
start_position=dict_seg_source_info["start_sec"],
)
# apply augmentations
audio = audio * dict_seg_source_info["gain"]
if dict_seg_source_info["channelswap"]:
audio = np.flip(audio, axis=0)
audio_sources.append(audio)
stems = np.stack(audio_sources, axis=0)
mixture = stems.sum(axis=0)
mixture_lufs = self.meter.integrated_loudness(mixture.T)
if np.isinf(mixture_lufs):
mixture_loudnorm = mixture
else:
augmented_gain = self.target_loudnorm_lufs - mixture_lufs
mixture_loudnorm = mixture * db2linear(augmented_gain, eps=0.0)
return mixture_limited, mixture_loudnorm
# def __len__(self):
# return 100
class DelimitValidDataset(MusdbValidDataset):
def __init__(
self,
target: str = "vocals",
root: str = None,
delimit_valid_root: str = None,
valid_target_lufs: float = -8.05, # From the Table 1 of the paper, the average loudness of commerical music.
target_loudnorm_lufs: float = -14.0,
delimit_valid_L_root: str = None, # This will be used when using the target as compressed (normal_L) mixture.
use_custom_limiter: bool = False,
custom_limiter_attack_range: list = [0.1, 10.0],
custom_limiter_release_range: list = [30.0, 200.0],
*args,
**kwargs,
) -> None:
super().__init__(target=target, root=root, *args, **kwargs)
self.delimit_valid_root = delimit_valid_root
if self.delimit_valid_root:
with open(f"{self.delimit_valid_root}/valid_loudness.json", "r") as f:
self.dict_valid_loudness = json.load(f)
self.delimit_valid_L_root = delimit_valid_L_root
if self.delimit_valid_L_root:
with open(f"{self.delimit_valid_L_root}/valid_loudness.json", "r") as f:
self.dict_valid_L_loudness = json.load(f)
self.valid_target_lufs = valid_target_lufs
self.target_loudnorm_lufs = target_loudnorm_lufs
self.meter = pyln.Meter(self.sample_rate)
self.use_custom_limiter = use_custom_limiter
if self.use_custom_limiter:
print("using Custom limiter limitaug for validation!!")
self.custom_limiter_attack_range = custom_limiter_attack_range
self.custom_limiter_release_range = custom_limiter_release_range
self.board = Pedalboard(
[
Gain(gain_db=0.0),
Compressor(
threshold_db=-10.0, ratio=4.0, attack_ms=2.0, release_ms=200.0
), # attack_ms and release_ms will be changed later.
Compressor(
threshold_db=0.0,
ratio=1000.0,
attack_ms=0.001,
release_ms=100.0,
),
Gain(gain_db=3.75),
Clipping(threshold_db=0.0),
]
) # This implementation is the same as JUCE Limiter.
# However, we want the first compressor to have a variable attack and release time.
# Therefore, we use the Custom Limiter instead of the JUCE Limiter.
else:
self.board = Pedalboard(
[Gain(gain_db=0.0), Limiter(threshold_db=0.0, release_ms=100.0)]
) # Currently, we are using a limiter with a release time of 100ms.
def __getitem__(self, index):
audio_sources = []
target_ind = None
for k, source in enumerate(self.sources):
# memorize index of target source
if source == self.target: # if source is 'vocals'
target_ind = k
track_path = self.valid_list[index]
song_name = os.path.basename(track_path)
audio_path = f"{track_path}/{source}.wav"
# audio = utils.load_wav_stereo(audio_path, self.sample_rate)
audio = librosa.load(audio_path, mono=False, sr=self.sample_rate)[0]
else:
track_path = self.valid_list[index]
song_name = os.path.basename(track_path)
audio_path = f"{track_path}/{source}.wav"
# audio = utils.load_wav_stereo(audio_path, self.sample_rate)
audio = librosa.load(audio_path, mono=False, sr=self.sample_rate)[0]
audio = torch.as_tensor(audio, dtype=torch.float32)
audio_sources.append(audio)
stems = np.stack(audio_sources, axis=0)
# apply linear mix over source index=0
# and here, linear mixture is a target unlike in MusdbTrainDataset
mixture = stems.sum(0)
if (
self.delimit_valid_root
): # If there exists a pre-processed delimit valid dataset
audio_path = f"{self.delimit_valid_root}/valid/{song_name}.wav"
mixture_limited = librosa.load(audio_path, mono=False, sr=self.sample_rate)[
0
]
mixture_lufs = self.dict_valid_loudness[song_name]
else:
if self.use_custom_limiter:
custom_limiter_attack = random.uniform(
self.custom_limiter_attack_range[0],
self.custom_limiter_attack_range[1],
)
self.board[1].attack_ms = custom_limiter_attack
custom_limiter_release = random.uniform(
self.custom_limiter_release_range[0],
self.custom_limiter_release_range[1],
)
self.board[1].release_ms = custom_limiter_release
mixture_limited, mixture_lufs = apply_limitaug(
mixture,
self.board,
self.meter,
self.sample_rate,
target_lufs=self.valid_target_lufs,
)
else:
mixture_limited, mixture_lufs = apply_limitaug(
mixture,
self.board,
self.meter,
self.sample_rate,
target_lufs=self.valid_target_lufs,
# target_loudnorm_lufs=self.target_loudnorm_lufs,
) # mixture_limited is a limiter applied mixture
# We will give mixture_limited as an input and mixture_loudnorm as a target to the model.
if self.delimit_valid_L_root:
audio_L_path = f"{self.delimit_valid_L_root}/valid/{song_name}.wav"
mixture_loudnorm = librosa.load(
audio_L_path, mono=False, sr=self.sample_rate
)[0]
mixture_lufs = self.dict_valid_L_loudness[song_name]
mixture = mixture_loudnorm
augmented_gain = self.target_loudnorm_lufs - mixture_lufs
mixture_loudnorm = mixture * db2linear(augmented_gain)
if self.use_custom_limiter:
return (
mixture_limited,
mixture_loudnorm,
song_name,
mixture_lufs,
custom_limiter_attack,
custom_limiter_release,
)
else:
return mixture_limited, mixture_loudnorm, song_name, mixture_lufs
class OzoneValidDataset(MusdbValidDataset):
def __init__(
self,
target: str = "all",
root: str = None,
ozone_root: str = None,
target_loudnorm_lufs: float = -14.0,
*args,
**kwargs,
) -> None:
super().__init__(target=target, root=root, *args, **kwargs)
self.ozone_root = ozone_root
self.target_loudnorm_lufs = target_loudnorm_lufs
with open(f"{self.ozone_root}/valid_loudness.json", "r") as f:
self.dict_valid_loudness = json.load(f)
def __getitem__(self, index):
audio_sources = []
track_path = self.valid_list[index]
song_name = os.path.basename(track_path)
for k, source in enumerate(self.sources):
audio_path = f"{track_path}/{source}.wav"
# audio = utils.load_wav_stereo(audio_path, self.sample_rate)
audio = librosa.load(audio_path, mono=False, sr=self.sample_rate)[0]
audio_sources.append(audio)
stems = np.stack(audio_sources, axis=0)
mixture = stems.sum(0)
audio_path = f"{self.ozone_root}/ozone_train_fixed/{song_name}.wav"
mixture_limited = librosa.load(audio_path, mono=False, sr=self.sample_rate)[0]
mixture_lufs = self.dict_valid_loudness[song_name]
augmented_gain = self.target_loudnorm_lufs - mixture_lufs
mixture_loudnorm = mixture * db2linear(augmented_gain)
return mixture_limited, mixture_loudnorm, song_name, mixture_lufs