File size: 25,439 Bytes
a00b67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68b4dbd
a00b67a
 
 
 
 
68b4dbd
a00b67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68b4dbd
a00b67a
68b4dbd
a00b67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68b4dbd
 
 
 
 
a00b67a
 
 
 
 
 
 
 
 
68b4dbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a00b67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68b4dbd
 
 
 
 
 
 
 
a00b67a
 
 
 
 
 
68b4dbd
 
a00b67a
68b4dbd
a00b67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68b4dbd
 
 
a00b67a
 
 
 
 
 
 
68b4dbd
a00b67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68b4dbd
a00b67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
import os
import random
from typing import Optional, Callable
import json
import glob
import csv

import numpy as np
import torch
import librosa
import pyloudnorm as pyln
from pedalboard import Pedalboard, Limiter, Gain, Compressor, Clipping

from .dataset import (
    MusdbTrainDataset,
    MusdbValidDataset,
    apply_limitaug,
    # apply_limitaug_loudnorm,
)
from utils import (
    load_wav_arbitrary_position_stereo,
    load_wav_specific_position_stereo,
    db2linear,
    str2bool,
)


class DelimitTrainDataset(MusdbTrainDataset):
    def __init__(
        self,
        target: str = "all",
        root: str = None,
        seq_duration: Optional[float] = 6.0,
        samples_per_track: int = 64,
        source_augmentations: Optional[Callable] = lambda audio: audio,
        sample_rate: int = 44100,
        seed: int = 42,
        limitaug_method: str = "limitaug",
        limitaug_mode: str = "normal_L",
        limitaug_custom_target_lufs: float = None,
        limitaug_custom_target_lufs_std: float = None,
        target_loudnorm_lufs: float = -14.0,
        target_limitaug_mode: str = None,
        target_limitaug_custom_target_lufs: float = None,
        target_limitaug_custom_target_lufs_std: float = None,
        custom_limiter_attack_range: list = [2.0, 2.0],
        custom_limiter_release_range: list = [200.0, 200.0],
        *args,
        **kwargs,
    ) -> None:
        super().__init__(
            target=target,
            root=root,
            seq_duration=seq_duration,
            samples_per_track=samples_per_track,
            source_augmentations=source_augmentations,
            sample_rate=sample_rate,
            seed=seed,
            limitaug_method=limitaug_method,
            limitaug_mode=limitaug_mode,
            limitaug_custom_target_lufs=limitaug_custom_target_lufs,
            limitaug_custom_target_lufs_std=limitaug_custom_target_lufs_std,
            target_loudnorm_lufs=target_loudnorm_lufs,
            custom_limiter_attack_range=custom_limiter_attack_range,
            custom_limiter_release_range=custom_limiter_release_range,
            *args,
            **kwargs,
        )

        self.target_limitaug_mode = target_limitaug_mode

        self.target_limitaug_custom_target_lufs = (target_limitaug_custom_target_lufs,)
        self.target_limitaug_custom_target_lufs_std = (
            target_limitaug_custom_target_lufs_std,
        )
        self.limitaug_mode_statistics["target_custom"] = [
            target_limitaug_custom_target_lufs,
            target_limitaug_custom_target_lufs_std,
        ]

        """
        Parameters
        ----------
        limitaug_method : str
        choose from ["linear_gain_increase", "limitaug", "limitaug_then_loudnorm", "only_loudnorm"]
        limitaug_mode : str
        choose from ["uniform", "normal", "normal_L", "normal_XL", "normal_short_term", "normal_L_short_term", "normal_XL_short_term", "custom"]
        limitaug_custom_target_lufs : float
        valid only when
        limitaug_mode == "custom"
        target_loudnorm_lufs : float
        valid only when
        limitaug_method == 'limitaug_then_loudnorm' or 'only_loudnorm'
        default is -14.
        To the best of my knowledge, Spotify and Youtube music is using -14 as a reference loudness normalization level.
        No special reason for the choice of -14 as target_loudnorm_lufs.
        target : str
            target name of the source to be separated, defaults to ``vocals``.
        root : str
            root path of MUSDB
        seq_duration : float
            training is performed in chunks of ``seq_duration`` (in seconds,
            defaults to ``None`` which loads the full audio track
        samples_per_track : int
            sets the number of samples, yielded from each track per epoch.
            Defaults to 64
        source_augmentations : list[callables]
            provide list of augmentation function that take a multi-channel
            audio file of shape (src, samples) as input and output. Defaults to
            no-augmentations (input = output)
        seed : int
            control randomness of dataset iterations
        args, kwargs : additional keyword arguments
            used to add further control for the musdb dataset
            initialization function.
        """

    # Get a limitaug result without target (individual stem source)
    def get_limitaug_mixture(self, mixture):
        if self.limitaug_method == "limitaug":
            self.board[1].release_ms = random.uniform(30.0, 200.0)
            target_lufs = self.sample_target_lufs()
            mixture_limited, mixture_lufs = apply_limitaug(
                mixture,
                self.board,
                self.meter,
                self.sample_rate,
                target_lufs=target_lufs,
            )

        elif self.limitaug_method == "limitaug_then_loudnorm":
            self.board[1].release_ms = random.uniform(30.0, 200.0)
            target_lufs = self.sample_target_lufs()
            mixture_limited, mixture_lufs = (
                apply_limitaug(
                    mixture,
                    self.board,
                    self.meter,
                    self.sample_rate,
                    target_lufs=target_lufs,
                    target_loudnorm_lufs=self.target_loudnorm_lufs,
                ),
            )

        # Apply LimitAug using Custom Limiter
        elif self.limitaug_method == "custom_limiter_limitaug":
            # Change attack time of First compressor of the Limiter
            self.board[1].attack_ms = random.uniform(
                self.custom_limiter_attack_range[0], self.custom_limiter_attack_range[1]
            )
            # Change release time of First compressor of the Limiter
            self.board[1].release_ms = random.uniform(
                self.custom_limiter_release_range[0],
                self.custom_limiter_release_range[1],
            )
            # Change release time of Second compressor of the Limiter
            self.board[2].release_ms = random.uniform(30.0, 200.0)
            target_lufs = self.sample_target_lufs()
            mixture_limited, mixture_lufs = apply_limitaug(
                mixture,
                self.board,
                self.meter,
                self.sample_rate,
                target_lufs=target_lufs,
                target_loudnorm_lufs=self.target_loudnorm_lufs,
            )

        # When we want to force NN to output an appropriately compressed target output
        if self.target_limitaug_mode:
            mixture_target_lufs = random.gauss(
                self.limitaug_mode_statistics[self.target_limitaug_mode][0],
                self.limitaug_mode_statistics[self.target_limitaug_mode][1],
            )
            mixture, target_lufs = apply_limitaug(
                mixture,
                self.board,
                self.meter,
                self.sample_rate,
                target_lufs=mixture_target_lufs,
                loudness=mixture_lufs,
            )

        if np.isinf(mixture_lufs):
            mixture_loudnorm = mixture
        else:
            augmented_gain = self.target_loudnorm_lufs - mixture_lufs
            mixture_loudnorm = mixture * db2linear(augmented_gain, eps=0.0)

        return mixture_limited, mixture_loudnorm

    def __getitem__(self, index):
        audio_sources = []

        for k, source in enumerate(self.sources):
            # memorize index of target source
            if source == self.target:  # if source is 'vocals'
                track_path = self.train_list[
                    index // self.samples_per_track
                ]  # we want to use # training samples per each track.
                audio_path = f"{track_path}/{source}.wav"
                audio = load_wav_arbitrary_position_stereo(
                    audio_path, self.sample_rate, self.seq_duration
                )
            else:
                track_path = random.choice(self.train_list)
                audio_path = f"{track_path}/{source}.wav"
                audio = load_wav_arbitrary_position_stereo(
                    audio_path, self.sample_rate, self.seq_duration
                )
            audio = self.source_augmentations(audio)
            audio_sources.append(audio)

        stems = np.stack(audio_sources, axis=0)

        # apply linear mix over source index=0
        # and here, linear mixture is a target unlike in MusdbTrainDataset
        mixture = stems.sum(0)
        # target_lufs = self.sample_target_lufs()
        mixture_limited, mixture_loudnorm = self.get_limitaug_mixture(mixture)
        # # We will give mixture_limited as an input and mixture_loudnorm as a target to the model.

        mixture_limited = np.clip(mixture_limited, -1.0, 1.0)
        mixture_limited = torch.as_tensor(mixture_limited, dtype=torch.float32)
        mixture_loudnorm = torch.as_tensor(mixture_loudnorm, dtype=torch.float32)

        return mixture_limited, mixture_loudnorm


class OzoneTrainDataset(DelimitTrainDataset):
    def __init__(
        self,
        target: str = "all",
        root: str = None,
        ozone_root: str = None,
        use_fixed: float = 0.1,  # ratio of fixed samples
        seq_duration: Optional[float] = 6.0,
        samples_per_track: int = 64,
        source_augmentations: Optional[Callable] = lambda audio: audio,
        sample_rate: int = 44100,
        seed: int = 42,
        limitaug_method: str = "limitaug",
        limitaug_mode: str = "normal_L",
        limitaug_custom_target_lufs: float = None,
        limitaug_custom_target_lufs_std: float = None,
        target_loudnorm_lufs: float = -14.0,
        target_limitaug_mode: str = None,
        target_limitaug_custom_target_lufs: float = None,
        target_limitaug_custom_target_lufs_std: float = None,
        custom_limiter_attack_range: list = [2.0, 2.0],
        custom_limiter_release_range: list = [200.0, 200.0],
        *args,
        **kwargs,
    ) -> None:
        super().__init__(
            target,
            root,
            seq_duration,
            samples_per_track,
            source_augmentations,
            sample_rate,
            seed,
            limitaug_method,
            limitaug_mode,
            limitaug_custom_target_lufs,
            limitaug_custom_target_lufs_std,
            target_loudnorm_lufs,
            target_limitaug_mode,
            target_limitaug_custom_target_lufs,
            target_limitaug_custom_target_lufs_std,
            custom_limiter_attack_range,
            custom_limiter_release_range,
            *args,
            **kwargs,
        )

        self.ozone_root = ozone_root
        self.use_fixed = use_fixed
        self.list_train_fixed = glob.glob(f"{self.ozone_root}/ozone_train_fixed/*.wav")
        # self.list_train_random = glob.glob(
        #     f"{self.ozone_root}/ozone_train_random/*.wav"
        # )
        # self.dict_train_random = {}
        self.list_dict_train_random = []

        # Load information of pre-generated random training examples
        list_csv_files = glob.glob(f"{self.ozone_root}/ozone_train_random_*.csv")
        list_csv_files.sort()
        for csv_file in list_csv_files:
            with open(csv_file, "r") as f:
                reader = csv.reader(f)
                next(reader)
                for row in reader:
                    self.list_dict_train_random.append(
                        {
                            row[0]: {
                                "max_threshold": float(row[1]),
                                "max_character": float(row[2]),
                                "vocals": {
                                    "name": row[3],
                                    "start_sec": float(row[4]),
                                    "gain": float(row[5]),
                                    "channelswap": str2bool(row[6]),
                                },
                                "bass": {
                                    "name": row[7],
                                    "start_sec": float(row[8]),
                                    "gain": float(row[9]),
                                    "channelswap": str2bool(row[10]),
                                },
                                "drums": {
                                    "name": row[11],
                                    "start_sec": float(row[12]),
                                    "gain": float(row[13]),
                                    "channelswap": str2bool(row[14]),
                                },
                                "other": {
                                    "name": row[15],
                                    "start_sec": float(row[16]),
                                    "gain": float(row[17]),
                                    "channelswap": str2bool(row[18]),
                                },
                            }
                        }
                    )
                    # self.dict_train_random[row[0]] = {
                    #     "max_threshold": float(row[1]),
                    #     "max_character": float(row[2]),
                    #     "vocals": {
                    #         "name": row[3],
                    #         "start_sec": float(row[4]),
                    #         "gain": float(row[5]),
                    #         "channelswap": str2bool(row[6]),
                    #     },
                    #     "bass": {
                    #         "name": row[7],
                    #         "start_sec": float(row[8]),
                    #         "gain": float(row[9]),
                    #         "channelswap": str2bool(row[10]),
                    #     },
                    #     "drums": {
                    #         "name": row[11],
                    #         "start_sec": float(row[12]),
                    #         "gain": float(row[13]),
                    #         "channelswap": str2bool(row[14]),
                    #     },
                    #     "other": {
                    #         "name": row[15],
                    #         "start_sec": float(row[16]),
                    #         "gain": float(row[17]),
                    #         "channelswap": str2bool(row[18]),
                    #     },
                    # }

    def __getitem__(self, idx):
        use_fixed_prob = random.random()

        if use_fixed_prob <= self.use_fixed:
            # Fixed examples
            audio_path = random.choice(self.list_train_fixed)
            song_name = os.path.basename(audio_path).replace(".wav", "")
            mixture_limited, start_pos_sec = load_wav_arbitrary_position_stereo(
                audio_path, self.sample_rate, self.seq_duration, return_pos=True
            )

            audio_sources = []
            track_path = f"{self.root}/train/{song_name}"
            for source in self.sources:
                audio_path = f"{track_path}/{source}.wav"
                audio = load_wav_specific_position_stereo(
                    audio_path,
                    self.sample_rate,
                    self.seq_duration,
                    start_position=start_pos_sec,
                )
                audio_sources.append(audio)

        else:
            # Random examples
            # Load mixture_limited (pre-generated)
            # audio_path = random.choice(self.list_train_random)

            dict_seg = random.choice(self.list_dict_train_random)
            seg_name = list(dict_seg.keys())[0]
            audio_path = f"{self.ozone_root}/ozone_train_random/{seg_name}.wav"
            dict_seg_info = dict_seg[seg_name]

            # seg_name = os.path.basename(audio_path).replace(".wav", "")
            mixture_limited, sr = librosa.load(
                audio_path, sr=self.sample_rate, mono=False
            )

            # Load mixture_unlimited (from the original musdb18, using metadata)
            audio_sources = []
            # dict_seg_info = self.dict_train_random[seg_name]

            for source in self.sources:
                # dict_seg_info = self.dict_train_random[seg_name]
                dict_seg_source_info = dict_seg_info[source]
                audio_path = (
                    f"{self.root}/train/{dict_seg_source_info['name']}/{source}.wav"
                )
                audio = load_wav_specific_position_stereo(
                    audio_path,
                    self.sample_rate,
                    self.seq_duration,
                    start_position=dict_seg_source_info["start_sec"],
                )

                # apply augmentations
                audio = audio * dict_seg_source_info["gain"]
                if dict_seg_source_info["channelswap"]:
                    audio = np.flip(audio, axis=0)

                audio_sources.append(audio)

        stems = np.stack(audio_sources, axis=0)
        mixture = stems.sum(axis=0)
        mixture_lufs = self.meter.integrated_loudness(mixture.T)
        if np.isinf(mixture_lufs):
            mixture_loudnorm = mixture
        else:
            augmented_gain = self.target_loudnorm_lufs - mixture_lufs
            mixture_loudnorm = mixture * db2linear(augmented_gain, eps=0.0)

        return mixture_limited, mixture_loudnorm

    # def __len__(self):
    #     return 100


class DelimitValidDataset(MusdbValidDataset):
    def __init__(
        self,
        target: str = "vocals",
        root: str = None,
        delimit_valid_root: str = None,
        valid_target_lufs: float = -8.05,  # From the Table 1 of the paper, the average loudness of commerical music.
        target_loudnorm_lufs: float = -14.0,
        delimit_valid_L_root: str = None,  # This will be used when using the target as compressed (normal_L) mixture.
        use_custom_limiter: bool = False,
        custom_limiter_attack_range: list = [0.1, 10.0],
        custom_limiter_release_range: list = [30.0, 200.0],
        *args,
        **kwargs,
    ) -> None:
        super().__init__(target=target, root=root, *args, **kwargs)
        self.delimit_valid_root = delimit_valid_root
        if self.delimit_valid_root:
            with open(f"{self.delimit_valid_root}/valid_loudness.json", "r") as f:
                self.dict_valid_loudness = json.load(f)
        self.delimit_valid_L_root = delimit_valid_L_root
        if self.delimit_valid_L_root:
            with open(f"{self.delimit_valid_L_root}/valid_loudness.json", "r") as f:
                self.dict_valid_L_loudness = json.load(f)

        self.valid_target_lufs = valid_target_lufs
        self.target_loudnorm_lufs = target_loudnorm_lufs
        self.meter = pyln.Meter(self.sample_rate)
        self.use_custom_limiter = use_custom_limiter

        if self.use_custom_limiter:
            print("using Custom limiter limitaug for validation!!")
            self.custom_limiter_attack_range = custom_limiter_attack_range
            self.custom_limiter_release_range = custom_limiter_release_range
            self.board = Pedalboard(
                [
                    Gain(gain_db=0.0),
                    Compressor(
                        threshold_db=-10.0, ratio=4.0, attack_ms=2.0, release_ms=200.0
                    ),  # attack_ms and release_ms will be changed later.
                    Compressor(
                        threshold_db=0.0,
                        ratio=1000.0,
                        attack_ms=0.001,
                        release_ms=100.0,
                    ),
                    Gain(gain_db=3.75),
                    Clipping(threshold_db=0.0),
                ]
            )  # This implementation is the same as JUCE Limiter.
            # However, we want the first compressor to have a variable attack and release time.
            # Therefore, we use the Custom Limiter instead of the JUCE Limiter.
        else:
            self.board = Pedalboard(
                [Gain(gain_db=0.0), Limiter(threshold_db=0.0, release_ms=100.0)]
            )  # Currently, we are using a limiter with a release time of 100ms.

    def __getitem__(self, index):
        audio_sources = []
        target_ind = None

        for k, source in enumerate(self.sources):
            # memorize index of target source
            if source == self.target:  # if source is 'vocals'
                target_ind = k
                track_path = self.valid_list[index]
                song_name = os.path.basename(track_path)
                audio_path = f"{track_path}/{source}.wav"
                # audio = utils.load_wav_stereo(audio_path, self.sample_rate)
                audio = librosa.load(audio_path, mono=False, sr=self.sample_rate)[0]
            else:
                track_path = self.valid_list[index]
                song_name = os.path.basename(track_path)
                audio_path = f"{track_path}/{source}.wav"
                # audio = utils.load_wav_stereo(audio_path, self.sample_rate)
                audio = librosa.load(audio_path, mono=False, sr=self.sample_rate)[0]

            audio = torch.as_tensor(audio, dtype=torch.float32)
            audio_sources.append(audio)

        stems = np.stack(audio_sources, axis=0)

        # apply linear mix over source index=0
        # and here, linear mixture is a target unlike in MusdbTrainDataset
        mixture = stems.sum(0)
        if (
            self.delimit_valid_root
        ):  # If there exists a pre-processed delimit valid dataset
            audio_path = f"{self.delimit_valid_root}/valid/{song_name}.wav"
            mixture_limited = librosa.load(audio_path, mono=False, sr=self.sample_rate)[
                0
            ]
            mixture_lufs = self.dict_valid_loudness[song_name]

        else:
            if self.use_custom_limiter:
                custom_limiter_attack = random.uniform(
                    self.custom_limiter_attack_range[0],
                    self.custom_limiter_attack_range[1],
                )
                self.board[1].attack_ms = custom_limiter_attack

                custom_limiter_release = random.uniform(
                    self.custom_limiter_release_range[0],
                    self.custom_limiter_release_range[1],
                )
                self.board[1].release_ms = custom_limiter_release

                mixture_limited, mixture_lufs = apply_limitaug(
                    mixture,
                    self.board,
                    self.meter,
                    self.sample_rate,
                    target_lufs=self.valid_target_lufs,
                )
            else:
                mixture_limited, mixture_lufs = apply_limitaug(
                    mixture,
                    self.board,
                    self.meter,
                    self.sample_rate,
                    target_lufs=self.valid_target_lufs,
                    # target_loudnorm_lufs=self.target_loudnorm_lufs,
                )  # mixture_limited is a limiter applied mixture
                # We will give mixture_limited as an input and mixture_loudnorm as a target to the model.

        if self.delimit_valid_L_root:
            audio_L_path = f"{self.delimit_valid_L_root}/valid/{song_name}.wav"
            mixture_loudnorm = librosa.load(
                audio_L_path, mono=False, sr=self.sample_rate
            )[0]
            mixture_lufs = self.dict_valid_L_loudness[song_name]
            mixture = mixture_loudnorm

        augmented_gain = self.target_loudnorm_lufs - mixture_lufs
        mixture_loudnorm = mixture * db2linear(augmented_gain)

        if self.use_custom_limiter:
            return (
                mixture_limited,
                mixture_loudnorm,
                song_name,
                mixture_lufs,
                custom_limiter_attack,
                custom_limiter_release,
            )
        else:
            return mixture_limited, mixture_loudnorm, song_name, mixture_lufs


class OzoneValidDataset(MusdbValidDataset):
    def __init__(
        self,
        target: str = "all",
        root: str = None,
        ozone_root: str = None,
        target_loudnorm_lufs: float = -14.0,
        *args,
        **kwargs,
    ) -> None:
        super().__init__(target=target, root=root, *args, **kwargs)

        self.ozone_root = ozone_root
        self.target_loudnorm_lufs = target_loudnorm_lufs

        with open(f"{self.ozone_root}/valid_loudness.json", "r") as f:
            self.dict_valid_loudness = json.load(f)

    def __getitem__(self, index):
        audio_sources = []

        track_path = self.valid_list[index]
        song_name = os.path.basename(track_path)
        for k, source in enumerate(self.sources):
            audio_path = f"{track_path}/{source}.wav"
            # audio = utils.load_wav_stereo(audio_path, self.sample_rate)
            audio = librosa.load(audio_path, mono=False, sr=self.sample_rate)[0]
            audio_sources.append(audio)

        stems = np.stack(audio_sources, axis=0)

        mixture = stems.sum(0)

        audio_path = f"{self.ozone_root}/ozone_train_fixed/{song_name}.wav"
        mixture_limited = librosa.load(audio_path, mono=False, sr=self.sample_rate)[0]

        mixture_lufs = self.dict_valid_loudness[song_name]
        augmented_gain = self.target_loudnorm_lufs - mixture_lufs
        mixture_loudnorm = mixture * db2linear(augmented_gain)

        return mixture_limited, mixture_loudnorm, song_name, mixture_lufs