jeevitha-app's picture
Create app.py
0788209 verified
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import gradio as gr
model = SentenceTransformer("all-MiniLM-L6-v2")
def get_embedding(text):
return model.encode([text])[0]
def compute_similarity(resume, jd):
resume_emb = get_embedding(resume)
jd_emb = get_embedding(jd)
similarity = cosine_similarity([resume_emb], [jd_emb])[0][0]
return round(similarity * 100, 2)
def check_resume(resume_text, jd_text):
score = compute_similarity(resume_text, jd_text)
result = f"Similarity Score: {score}%\n\n"
if score > 75:
result += "✅ Resume is highly aligned with the Job Description."
elif score > 50:
result += "⚠️ Resume is partially aligned. Consider refining keywords and skills."
else:
result += "❌ Resume is not aligned. May contain irrelevant or fake claims."
return result
gr.Interface(
fn=check_resume,
inputs=[
gr.Textbox(label="Paste Resume Text", lines=20, placeholder="Copy your resume content here..."),
gr.Textbox(label="Paste Job Description", lines=20, placeholder="Copy the job description here...")
],
outputs=gr.Textbox(label="Analysis Result"),
title="🧾 Resume-JD Alignment Detector",
description="Check if your resume genuinely matches the job description using LLM-based similarity."
).launch()