Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sentence_transformers import SentenceTransformer
|
| 2 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 6 |
+
|
| 7 |
+
def get_embedding(text):
|
| 8 |
+
return model.encode([text])[0]
|
| 9 |
+
|
| 10 |
+
def compute_similarity(resume, jd):
|
| 11 |
+
resume_emb = get_embedding(resume)
|
| 12 |
+
jd_emb = get_embedding(jd)
|
| 13 |
+
similarity = cosine_similarity([resume_emb], [jd_emb])[0][0]
|
| 14 |
+
return round(similarity * 100, 2)
|
| 15 |
+
|
| 16 |
+
def check_resume(resume_text, jd_text):
|
| 17 |
+
score = compute_similarity(resume_text, jd_text)
|
| 18 |
+
result = f"Similarity Score: {score}%\n\n"
|
| 19 |
+
if score > 75:
|
| 20 |
+
result += "✅ Resume is highly aligned with the Job Description."
|
| 21 |
+
elif score > 50:
|
| 22 |
+
result += "⚠️ Resume is partially aligned. Consider refining keywords and skills."
|
| 23 |
+
else:
|
| 24 |
+
result += "❌ Resume is not aligned. May contain irrelevant or fake claims."
|
| 25 |
+
return result
|
| 26 |
+
|
| 27 |
+
gr.Interface(
|
| 28 |
+
fn=check_resume,
|
| 29 |
+
inputs=[
|
| 30 |
+
gr.Textbox(label="Paste Resume Text", lines=20, placeholder="Copy your resume content here..."),
|
| 31 |
+
gr.Textbox(label="Paste Job Description", lines=20, placeholder="Copy the job description here...")
|
| 32 |
+
],
|
| 33 |
+
outputs=gr.Textbox(label="Analysis Result"),
|
| 34 |
+
title="🧾 Resume-JD Alignment Detector",
|
| 35 |
+
description="Check if your resume genuinely matches the job description using LLM-based similarity."
|
| 36 |
+
).launch()
|