Spaces:
Running
Running
import os | |
from dataclasses import dataclass, field | |
from typing import Dict, Any, Optional, List, Tuple | |
from pathlib import Path | |
import torch | |
import math | |
def parse_bool_env(env_value: Optional[str]) -> bool: | |
"""Parse environment variable string to boolean | |
Handles various true/false string representations: | |
- True: "true", "True", "TRUE", "1", etc | |
- False: "false", "False", "FALSE", "0", "", None | |
""" | |
if not env_value: | |
return False | |
return str(env_value).lower() in ('true', '1', 't', 'y', 'yes') | |
HF_API_TOKEN = os.getenv("HF_API_TOKEN") | |
ASK_USER_TO_DUPLICATE_SPACE = parse_bool_env(os.getenv("ASK_USER_TO_DUPLICATE_SPACE")) | |
# Base storage path | |
STORAGE_PATH = Path(os.environ.get('STORAGE_PATH', '.data')) | |
# Subdirectories for different data types | |
VIDEOS_TO_SPLIT_PATH = STORAGE_PATH / "videos_to_split" # Raw uploaded/downloaded files | |
STAGING_PATH = STORAGE_PATH / "staging" # This is where files that are captioned or need captioning are waiting | |
TRAINING_PATH = STORAGE_PATH / "training" # Folder containing the final training dataset | |
TRAINING_VIDEOS_PATH = TRAINING_PATH / "videos" # Captioned clips ready for training | |
MODEL_PATH = STORAGE_PATH / "model" # Model checkpoints and files | |
OUTPUT_PATH = STORAGE_PATH / "output" # Training outputs and logs | |
LOG_FILE_PATH = OUTPUT_PATH / "last_session.log" | |
# On the production server we can afford to preload the big model | |
PRELOAD_CAPTIONING_MODEL = parse_bool_env(os.environ.get('PRELOAD_CAPTIONING_MODEL')) | |
CAPTIONING_MODEL = "lmms-lab/LLaVA-Video-7B-Qwen2" | |
DEFAULT_PROMPT_PREFIX = "In the style of TOK, " | |
# This is only use to debug things in local | |
USE_MOCK_CAPTIONING_MODEL = parse_bool_env(os.environ.get('USE_MOCK_CAPTIONING_MODEL')) | |
DEFAULT_CAPTIONING_BOT_INSTRUCTIONS = "Please write a full video description. Be synthetic and methodically list camera (close-up shot, medium-shot..), genre (music video, horror movie scene, video game footage, go pro footage, japanese anime, noir film, science-fiction, action movie, documentary..), characters (physical appearance, look, skin, facial features, haircut, clothing), scene (action, positions, movements), location (indoor, outdoor, place, building, country..), time and lighting (natural, golden hour, night time, LED lights, kelvin temperature etc), weather and climate (dusty, rainy, fog, haze, snowing..), era/settings." | |
# Create directories | |
STORAGE_PATH.mkdir(parents=True, exist_ok=True) | |
VIDEOS_TO_SPLIT_PATH.mkdir(parents=True, exist_ok=True) | |
STAGING_PATH.mkdir(parents=True, exist_ok=True) | |
TRAINING_PATH.mkdir(parents=True, exist_ok=True) | |
TRAINING_VIDEOS_PATH.mkdir(parents=True, exist_ok=True) | |
MODEL_PATH.mkdir(parents=True, exist_ok=True) | |
OUTPUT_PATH.mkdir(parents=True, exist_ok=True) | |
# To secure public instances | |
VMS_ADMIN_PASSWORD = os.environ.get('VMS_ADMIN_PASSWORD', '') | |
# Image normalization settings | |
NORMALIZE_IMAGES_TO = os.environ.get('NORMALIZE_IMAGES_TO', 'png').lower() | |
if NORMALIZE_IMAGES_TO not in ['png', 'jpg']: | |
raise ValueError("NORMALIZE_IMAGES_TO must be either 'png' or 'jpg'") | |
JPEG_QUALITY = int(os.environ.get('JPEG_QUALITY', '97')) | |
MODEL_TYPES = { | |
"HunyuanVideo": "hunyuan_video", | |
"LTX-Video": "ltx_video", | |
"Wan": "wan" | |
} | |
# Training types | |
TRAINING_TYPES = { | |
"LoRA Finetune": "lora", | |
"Full Finetune": "full-finetune" | |
} | |
# Model versions for each model type | |
MODEL_VERSIONS = { | |
"wan": { | |
"Wan-AI/Wan2.1-T2V-1.3B-Diffusers": { | |
"name": "Wan 2.1 T2V 1.3B (text-only, smaller)", | |
"type": "text-to-video", | |
"description": "Faster, smaller model (1.3B parameters)" | |
}, | |
"Wan-AI/Wan2.1-T2V-14B-Diffusers": { | |
"name": "Wan 2.1 T2V 14B (text-only, larger)", | |
"type": "text-to-video", | |
"description": "Higher quality but slower (14B parameters)" | |
}, | |
"Wan-AI/Wan2.1-I2V-14B-480P-Diffusers": { | |
"name": "Wan 2.1 I2V 480p (image+text)", | |
"type": "image-to-video", | |
"description": "Image conditioning at 480p resolution" | |
}, | |
"Wan-AI/Wan2.1-I2V-14B-720P-Diffusers": { | |
"name": "Wan 2.1 I2V 720p (image+text)", | |
"type": "image-to-video", | |
"description": "Image conditioning at 720p resolution" | |
} | |
}, | |
"ltx_video": { | |
"Lightricks/LTX-Video": { | |
"name": "LTX Video (official)", | |
"type": "text-to-video", | |
"description": "Official LTX Video model" | |
} | |
}, | |
"hunyuan_video": { | |
"hunyuanvideo-community/HunyuanVideo": { | |
"name": "Hunyuan Video (official)", | |
"type": "text-to-video", | |
"description": "Official Hunyuan Video model" | |
} | |
} | |
} | |
DEFAULT_SEED = 42 | |
DEFAULT_REMOVE_COMMON_LLM_CAPTION_PREFIXES = True | |
DEFAULT_DATASET_TYPE = "video" | |
DEFAULT_TRAINING_TYPE = "lora" | |
DEFAULT_RESHAPE_MODE = "bicubic" | |
DEFAULT_MIXED_PRECISION = "bf16" | |
DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS = 200 | |
DEFAULT_LORA_RANK = 128 | |
DEFAULT_LORA_RANK_STR = str(DEFAULT_LORA_RANK) | |
DEFAULT_LORA_ALPHA = 128 | |
DEFAULT_LORA_ALPHA_STR = str(DEFAULT_LORA_ALPHA) | |
DEFAULT_CAPTION_DROPOUT_P = 0.05 | |
DEFAULT_BATCH_SIZE = 1 | |
DEFAULT_LEARNING_RATE = 3e-5 | |
# GPU SETTINGS | |
DEFAULT_NUM_GPUS = 1 | |
DEFAULT_MAX_GPUS = min(8, torch.cuda.device_count() if torch.cuda.is_available() else 1) | |
DEFAULT_PRECOMPUTATION_ITEMS = 512 | |
DEFAULT_NB_TRAINING_STEPS = 1000 | |
# For this value, it is recommended to use about 20 to 40% of the number of training steps | |
DEFAULT_NB_LR_WARMUP_STEPS = math.ceil(0.20 * DEFAULT_NB_TRAINING_STEPS) # 20% of training steps | |
# Whether to automatically restart a training job after a server reboot or not | |
DEFAULT_AUTO_RESUME = False | |
# For validation | |
DEFAULT_VALIDATION_NB_STEPS = 50 | |
DEFAULT_VALIDATION_HEIGHT = 512 | |
DEFAULT_VALIDATION_WIDTH = 768 | |
DEFAULT_VALIDATION_NB_FRAMES = 49 | |
DEFAULT_VALIDATION_FRAMERATE = 8 | |
# it is best to use resolutions that are powers of 8 | |
# The resolution should be divisible by 32 | |
# so we cannot use 1080, 540 etc as they are not divisible by 32 | |
MEDIUM_19_9_RATIO_WIDTH = 768 # 32 * 24 | |
MEDIUM_19_9_RATIO_HEIGHT = 512 # 32 * 16 | |
# 1920 = 32 * 60 (divided by 2: 960 = 32 * 30) | |
# 1920 = 32 * 60 (divided by 2: 960 = 32 * 30) | |
# 1056 = 32 * 33 (divided by 2: 544 = 17 * 32) | |
# 1024 = 32 * 32 (divided by 2: 512 = 16 * 32) | |
# it is important that the resolution buckets properly cover the training dataset, | |
# or else that we exclude from the dataset videos that are out of this range | |
# right now, finetrainers will crash if that happens, so the workaround is to have more buckets in here | |
NB_FRAMES_1 = 1 # 1 | |
NB_FRAMES_9 = 8 + 1 # 8 + 1 | |
NB_FRAMES_17 = 8 * 2 + 1 # 16 + 1 | |
NB_FRAMES_33 = 8 * 4 + 1 # 32 + 1 | |
NB_FRAMES_49 = 8 * 6 + 1 # 48 + 1 | |
NB_FRAMES_65 = 8 * 8 + 1 # 64 + 1 | |
NB_FRAMES_81 = 8 * 10 + 1 # 80 + 1 | |
NB_FRAMES_97 = 8 * 12 + 1 # 96 + 1 | |
NB_FRAMES_113 = 8 * 14 + 1 # 112 + 1 | |
NB_FRAMES_129 = 8 * 16 + 1 # 128 + 1 | |
NB_FRAMES_145 = 8 * 18 + 1 # 144 + 1 | |
NB_FRAMES_161 = 8 * 20 + 1 # 160 + 1 | |
NB_FRAMES_177 = 8 * 22 + 1 # 176 + 1 | |
NB_FRAMES_193 = 8 * 24 + 1 # 192 + 1 | |
NB_FRAMES_225 = 8 * 28 + 1 # 224 + 1 | |
NB_FRAMES_257 = 8 * 32 + 1 # 256 + 1 | |
# 256 isn't a lot by the way, especially with 60 FPS videos.. | |
# can we crank it and put more frames in here? | |
NB_FRAMES_273 = 8 * 34 + 1 # 272 + 1 | |
NB_FRAMES_289 = 8 * 36 + 1 # 288 + 1 | |
NB_FRAMES_305 = 8 * 38 + 1 # 304 + 1 | |
NB_FRAMES_321 = 8 * 40 + 1 # 320 + 1 | |
NB_FRAMES_337 = 8 * 42 + 1 # 336 + 1 | |
NB_FRAMES_353 = 8 * 44 + 1 # 352 + 1 | |
NB_FRAMES_369 = 8 * 46 + 1 # 368 + 1 | |
NB_FRAMES_385 = 8 * 48 + 1 # 384 + 1 | |
NB_FRAMES_401 = 8 * 50 + 1 # 400 + 1 | |
SMALL_TRAINING_BUCKETS = [ | |
(NB_FRAMES_1, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 1 | |
(NB_FRAMES_9, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 8 + 1 | |
(NB_FRAMES_17, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 16 + 1 | |
(NB_FRAMES_33, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 32 + 1 | |
(NB_FRAMES_49, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 48 + 1 | |
(NB_FRAMES_65, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 64 + 1 | |
(NB_FRAMES_81, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 80 + 1 | |
(NB_FRAMES_97, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 96 + 1 | |
(NB_FRAMES_113, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 112 + 1 | |
(NB_FRAMES_129, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 128 + 1 | |
(NB_FRAMES_145, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 144 + 1 | |
(NB_FRAMES_161, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 160 + 1 | |
(NB_FRAMES_177, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 176 + 1 | |
(NB_FRAMES_193, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 192 + 1 | |
(NB_FRAMES_225, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 224 + 1 | |
(NB_FRAMES_257, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 256 + 1 | |
] | |
MEDIUM_19_9_RATIO_WIDTH = 928 # 32 * 29 | |
MEDIUM_19_9_RATIO_HEIGHT = 512 # 32 * 16 | |
MEDIUM_19_9_RATIO_BUCKETS = [ | |
(NB_FRAMES_1, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 1 | |
(NB_FRAMES_9, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 8 + 1 | |
(NB_FRAMES_17, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 16 + 1 | |
(NB_FRAMES_33, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 32 + 1 | |
(NB_FRAMES_49, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 48 + 1 | |
(NB_FRAMES_65, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 64 + 1 | |
(NB_FRAMES_81, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 80 + 1 | |
(NB_FRAMES_97, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 96 + 1 | |
(NB_FRAMES_113, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 112 + 1 | |
(NB_FRAMES_129, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 128 + 1 | |
(NB_FRAMES_145, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 144 + 1 | |
(NB_FRAMES_161, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 160 + 1 | |
(NB_FRAMES_177, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 176 + 1 | |
(NB_FRAMES_193, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 192 + 1 | |
(NB_FRAMES_225, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 224 + 1 | |
(NB_FRAMES_257, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 256 + 1 | |
] | |
# Updated training presets to include Wan-2.1-T2V and support both LoRA and full-finetune | |
TRAINING_PRESETS = { | |
"HunyuanVideo (normal)": { | |
"model_type": "hunyuan_video", | |
"training_type": "lora", | |
"lora_rank": DEFAULT_LORA_RANK_STR, | |
"lora_alpha": DEFAULT_LORA_ALPHA_STR, | |
"train_steps": DEFAULT_NB_TRAINING_STEPS, | |
"batch_size": DEFAULT_BATCH_SIZE, | |
"learning_rate": 2e-5, | |
"save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS, | |
"training_buckets": SMALL_TRAINING_BUCKETS, | |
"flow_weighting_scheme": "none", | |
"num_gpus": DEFAULT_NUM_GPUS, | |
"precomputation_items": DEFAULT_PRECOMPUTATION_ITEMS, | |
"lr_warmup_steps": DEFAULT_NB_LR_WARMUP_STEPS, | |
}, | |
"LTX-Video (normal)": { | |
"model_type": "ltx_video", | |
"training_type": "lora", | |
"lora_rank": DEFAULT_LORA_RANK_STR, | |
"lora_alpha": DEFAULT_LORA_ALPHA_STR, | |
"train_steps": DEFAULT_NB_TRAINING_STEPS, | |
"batch_size": DEFAULT_BATCH_SIZE, | |
"learning_rate": DEFAULT_LEARNING_RATE, | |
"save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS, | |
"training_buckets": SMALL_TRAINING_BUCKETS, | |
"flow_weighting_scheme": "none", | |
"num_gpus": DEFAULT_NUM_GPUS, | |
"precomputation_items": DEFAULT_PRECOMPUTATION_ITEMS, | |
"lr_warmup_steps": DEFAULT_NB_LR_WARMUP_STEPS, | |
}, | |
"LTX-Video (16:9, HQ)": { | |
"model_type": "ltx_video", | |
"training_type": "lora", | |
"lora_rank": "256", | |
"lora_alpha": DEFAULT_LORA_ALPHA_STR, | |
"train_steps": DEFAULT_NB_TRAINING_STEPS, | |
"batch_size": DEFAULT_BATCH_SIZE, | |
"learning_rate": DEFAULT_LEARNING_RATE, | |
"save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS, | |
"training_buckets": MEDIUM_19_9_RATIO_BUCKETS, | |
"flow_weighting_scheme": "logit_normal", | |
"num_gpus": DEFAULT_NUM_GPUS, | |
"precomputation_items": DEFAULT_PRECOMPUTATION_ITEMS, | |
"lr_warmup_steps": DEFAULT_NB_LR_WARMUP_STEPS, | |
}, | |
"LTX-Video (Full Finetune)": { | |
"model_type": "ltx_video", | |
"training_type": "full-finetune", | |
"train_steps": DEFAULT_NB_TRAINING_STEPS, | |
"batch_size": DEFAULT_BATCH_SIZE, | |
"learning_rate": DEFAULT_LEARNING_RATE, | |
"save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS, | |
"training_buckets": SMALL_TRAINING_BUCKETS, | |
"flow_weighting_scheme": "logit_normal", | |
"num_gpus": DEFAULT_NUM_GPUS, | |
"precomputation_items": DEFAULT_PRECOMPUTATION_ITEMS, | |
"lr_warmup_steps": DEFAULT_NB_LR_WARMUP_STEPS, | |
}, | |
"Wan-2.1-T2V (normal)": { | |
"model_type": "wan", | |
"training_type": "lora", | |
"lora_rank": "32", | |
"lora_alpha": "32", | |
"train_steps": DEFAULT_NB_TRAINING_STEPS, | |
"batch_size": DEFAULT_BATCH_SIZE, | |
"learning_rate": 5e-5, | |
"save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS, | |
"training_buckets": SMALL_TRAINING_BUCKETS, | |
"flow_weighting_scheme": "logit_normal", | |
"num_gpus": DEFAULT_NUM_GPUS, | |
"precomputation_items": DEFAULT_PRECOMPUTATION_ITEMS, | |
"lr_warmup_steps": DEFAULT_NB_LR_WARMUP_STEPS, | |
}, | |
"Wan-2.1-T2V (HQ)": { | |
"model_type": "wan", | |
"training_type": "lora", | |
"lora_rank": "64", | |
"lora_alpha": "64", | |
"train_steps": DEFAULT_NB_TRAINING_STEPS, | |
"batch_size": DEFAULT_BATCH_SIZE, | |
"learning_rate": DEFAULT_LEARNING_RATE, | |
"save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS, | |
"training_buckets": MEDIUM_19_9_RATIO_BUCKETS, | |
"flow_weighting_scheme": "logit_normal", | |
"num_gpus": DEFAULT_NUM_GPUS, | |
"precomputation_items": DEFAULT_PRECOMPUTATION_ITEMS, | |
"lr_warmup_steps": DEFAULT_NB_LR_WARMUP_STEPS, | |
} | |
} | |
class TrainingConfig: | |
"""Configuration class for finetrainers training""" | |
# Required arguments must come first | |
model_name: str | |
pretrained_model_name_or_path: str | |
data_root: str | |
output_dir: str | |
# Optional arguments follow | |
revision: Optional[str] = None | |
version: Optional[str] = None | |
cache_dir: Optional[str] = None | |
# Dataset arguments | |
# note: video_column and caption_column serve a dual purpose, | |
# when using the CSV mode they have to be CSV column names, | |
# otherwise they have to be filename (relative to the data_root dir path) | |
video_column: str = "videos.txt" | |
caption_column: str = "prompts.txt" | |
id_token: Optional[str] = None | |
video_resolution_buckets: List[Tuple[int, int, int]] = field(default_factory=lambda: SMALL_TRAINING_BUCKETS) | |
video_reshape_mode: str = "center" | |
caption_dropout_p: float = DEFAULT_CAPTION_DROPOUT_P | |
caption_dropout_technique: str = "empty" | |
precompute_conditions: bool = False | |
# Diffusion arguments | |
flow_resolution_shifting: bool = False | |
flow_weighting_scheme: str = "none" | |
flow_logit_mean: float = 0.0 | |
flow_logit_std: float = 1.0 | |
flow_mode_scale: float = 1.29 | |
# Training arguments | |
training_type: str = "lora" | |
seed: int = DEFAULT_SEED | |
mixed_precision: str = "bf16" | |
batch_size: int = 1 | |
train_steps: int = DEFAULT_NB_TRAINING_STEPS | |
lora_rank: int = DEFAULT_LORA_RANK | |
lora_alpha: int = DEFAULT_LORA_ALPHA | |
target_modules: List[str] = field(default_factory=lambda: ["to_q", "to_k", "to_v", "to_out.0"]) | |
gradient_accumulation_steps: int = 1 | |
gradient_checkpointing: bool = True | |
checkpointing_steps: int = DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS | |
checkpointing_limit: Optional[int] = 2 | |
resume_from_checkpoint: Optional[str] = None | |
enable_slicing: bool = True | |
enable_tiling: bool = True | |
# Optimizer arguments | |
optimizer: str = "adamw" | |
lr: float = DEFAULT_LEARNING_RATE | |
scale_lr: bool = False | |
lr_scheduler: str = "constant_with_warmup" | |
lr_warmup_steps: int = DEFAULT_NB_LR_WARMUP_STEPS | |
lr_num_cycles: int = 1 | |
lr_power: float = 1.0 | |
beta1: float = 0.9 | |
beta2: float = 0.95 | |
weight_decay: float = 1e-4 | |
epsilon: float = 1e-8 | |
max_grad_norm: float = 1.0 | |
# Miscellaneous arguments | |
tracker_name: str = "finetrainers" | |
report_to: str = "wandb" | |
nccl_timeout: int = 1800 | |
def hunyuan_video_lora(cls, data_path: str, output_path: str, buckets=None) -> 'TrainingConfig': | |
"""Configuration for Hunyuan video-to-video LoRA training""" | |
return cls( | |
model_name="hunyuan_video", | |
pretrained_model_name_or_path="hunyuanvideo-community/HunyuanVideo", | |
data_root=data_path, | |
output_dir=output_path, | |
batch_size=1, | |
train_steps=DEFAULT_NB_TRAINING_STEPS, | |
lr=2e-5, | |
gradient_checkpointing=True, | |
id_token=None, | |
gradient_accumulation_steps=1, | |
lora_rank=DEFAULT_LORA_RANK, | |
lora_alpha=DEFAULT_LORA_ALPHA, | |
video_resolution_buckets=buckets or SMALL_TRAINING_BUCKETS, | |
caption_dropout_p=DEFAULT_CAPTION_DROPOUT_P, | |
flow_weighting_scheme="none", # Hunyuan specific | |
training_type="lora" | |
) | |
def ltx_video_lora(cls, data_path: str, output_path: str, buckets=None) -> 'TrainingConfig': | |
"""Configuration for LTX-Video LoRA training""" | |
return cls( | |
model_name="ltx_video", | |
pretrained_model_name_or_path="Lightricks/LTX-Video", | |
data_root=data_path, | |
output_dir=output_path, | |
batch_size=1, | |
train_steps=DEFAULT_NB_TRAINING_STEPS, | |
lr=DEFAULT_LEARNING_RATE, | |
gradient_checkpointing=True, | |
id_token=None, | |
gradient_accumulation_steps=4, | |
lora_rank=DEFAULT_LORA_RANK, | |
lora_alpha=DEFAULT_LORA_ALPHA, | |
video_resolution_buckets=buckets or SMALL_TRAINING_BUCKETS, | |
caption_dropout_p=DEFAULT_CAPTION_DROPOUT_P, | |
flow_weighting_scheme="logit_normal", # LTX specific | |
training_type="lora" | |
) | |
def ltx_video_full_finetune(cls, data_path: str, output_path: str, buckets=None) -> 'TrainingConfig': | |
"""Configuration for LTX-Video full finetune training""" | |
return cls( | |
model_name="ltx_video", | |
pretrained_model_name_or_path="Lightricks/LTX-Video", | |
data_root=data_path, | |
output_dir=output_path, | |
batch_size=1, | |
train_steps=DEFAULT_NB_TRAINING_STEPS, | |
lr=1e-5, | |
gradient_checkpointing=True, | |
id_token=None, | |
gradient_accumulation_steps=1, | |
video_resolution_buckets=buckets or SMALL_TRAINING_BUCKETS, | |
caption_dropout_p=DEFAULT_CAPTION_DROPOUT_P, | |
flow_weighting_scheme="logit_normal", # LTX specific | |
training_type="full-finetune" | |
) | |
def wan_lora(cls, data_path: str, output_path: str, buckets=None) -> 'TrainingConfig': | |
"""Configuration for Wan T2V LoRA training""" | |
return cls( | |
model_name="wan", | |
pretrained_model_name_or_path="Wan-AI/Wan2.1-T2V-1.3B-Diffusers", | |
data_root=data_path, | |
output_dir=output_path, | |
batch_size=1, | |
train_steps=DEFAULT_NB_TRAINING_STEPS, | |
lr=5e-5, | |
gradient_checkpointing=True, | |
id_token=None, | |
gradient_accumulation_steps=1, | |
lora_rank=32, | |
lora_alpha=32, | |
target_modules=["blocks.*(to_q|to_k|to_v|to_out.0)"], # Wan-specific target modules | |
video_resolution_buckets=buckets or SMALL_TRAINING_BUCKETS, | |
caption_dropout_p=DEFAULT_CAPTION_DROPOUT_P, | |
flow_weighting_scheme="logit_normal", # Wan specific | |
training_type="lora" | |
) | |
def to_args_list(self) -> List[str]: | |
"""Convert config to command line arguments list""" | |
args = [] | |
# Model arguments | |
# Add model_name (required argument) | |
args.extend(["--model_name", self.model_name]) | |
args.extend(["--pretrained_model_name_or_path", self.pretrained_model_name_or_path]) | |
if self.revision: | |
args.extend(["--revision", self.revision]) | |
if self.version: | |
args.extend(["--variant", self.version]) | |
if self.cache_dir: | |
args.extend(["--cache_dir", self.cache_dir]) | |
# Dataset arguments | |
args.extend(["--dataset_config", self.data_root]) | |
# Add ID token if specified | |
if self.id_token: | |
args.extend(["--id_token", self.id_token]) | |
# Add video resolution buckets | |
if self.video_resolution_buckets: | |
bucket_strs = [f"{f}x{h}x{w}" for f, h, w in self.video_resolution_buckets] | |
args.extend(["--video_resolution_buckets"] + bucket_strs) | |
args.extend(["--caption_dropout_p", str(self.caption_dropout_p)]) | |
args.extend(["--caption_dropout_technique", self.caption_dropout_technique]) | |
if self.precompute_conditions: | |
args.append("--precompute_conditions") | |
if hasattr(self, 'precomputation_items') and self.precomputation_items: | |
args.extend(["--precomputation_items", str(self.precomputation_items)]) | |
# Diffusion arguments | |
if self.flow_resolution_shifting: | |
args.append("--flow_resolution_shifting") | |
args.extend(["--flow_weighting_scheme", self.flow_weighting_scheme]) | |
args.extend(["--flow_logit_mean", str(self.flow_logit_mean)]) | |
args.extend(["--flow_logit_std", str(self.flow_logit_std)]) | |
args.extend(["--flow_mode_scale", str(self.flow_mode_scale)]) | |
# Training arguments | |
args.extend(["--training_type",self.training_type]) | |
args.extend(["--seed", str(self.seed)]) | |
# We don't use this, because mixed precision is handled by accelerate launch, not by the training script itself. | |
#args.extend(["--mixed_precision", self.mixed_precision]) | |
args.extend(["--batch_size", str(self.batch_size)]) | |
args.extend(["--train_steps", str(self.train_steps)]) | |
# LoRA specific arguments | |
if self.training_type == "lora": | |
args.extend(["--rank", str(self.lora_rank)]) | |
args.extend(["--lora_alpha", str(self.lora_alpha)]) | |
args.extend(["--target_modules"] + self.target_modules) | |
args.extend(["--gradient_accumulation_steps", str(self.gradient_accumulation_steps)]) | |
if self.gradient_checkpointing: | |
args.append("--gradient_checkpointing") | |
args.extend(["--checkpointing_steps", str(self.checkpointing_steps)]) | |
if self.checkpointing_limit: | |
args.extend(["--checkpointing_limit", str(self.checkpointing_limit)]) | |
if self.resume_from_checkpoint: | |
args.extend(["--resume_from_checkpoint", self.resume_from_checkpoint]) | |
if self.enable_slicing: | |
args.append("--enable_slicing") | |
if self.enable_tiling: | |
args.append("--enable_tiling") | |
# Optimizer arguments | |
args.extend(["--optimizer", self.optimizer]) | |
args.extend(["--lr", str(self.lr)]) | |
if self.scale_lr: | |
args.append("--scale_lr") | |
args.extend(["--lr_scheduler", self.lr_scheduler]) | |
args.extend(["--lr_warmup_steps", str(self.lr_warmup_steps)]) | |
args.extend(["--lr_num_cycles", str(self.lr_num_cycles)]) | |
args.extend(["--lr_power", str(self.lr_power)]) | |
args.extend(["--beta1", str(self.beta1)]) | |
args.extend(["--beta2", str(self.beta2)]) | |
args.extend(["--weight_decay", str(self.weight_decay)]) | |
args.extend(["--epsilon", str(self.epsilon)]) | |
args.extend(["--max_grad_norm", str(self.max_grad_norm)]) | |
# Miscellaneous arguments | |
args.extend(["--tracker_name", self.tracker_name]) | |
args.extend(["--output_dir", self.output_dir]) | |
args.extend(["--report_to", self.report_to]) | |
args.extend(["--nccl_timeout", str(self.nccl_timeout)]) | |
# normally this is disabled by default, but there was a bug in finetrainers | |
# so I had to fix it in trainer.py to make sure we check for push_to-hub | |
#args.append("--push_to_hub") | |
#args.extend(["--hub_token", str(False)]) | |
#args.extend(["--hub_model_id", str(False)]) | |
# If you are using LLM-captioned videos, it is common to see many unwanted starting phrases like | |
# "In this video, ...", "This video features ...", etc. | |
# To remove a simple subset of these phrases, you can specify | |
# --remove_common_llm_caption_prefixes when starting training. | |
args.append("--remove_common_llm_caption_prefixes") | |
return args |