File size: 25,402 Bytes
91fb4ef
 
 
 
7c52128
 
63c9f51
0ad7e2a
 
 
 
 
 
 
 
 
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
32b4f0f
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
02e94ba
91fb4ef
 
 
 
 
 
 
 
 
 
956cf49
 
 
91fb4ef
 
 
 
 
 
 
c6546ad
 
d2662cc
d464085
 
 
 
 
 
91fb4ef
 
d2662cc
 
b91a6aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6546ad
 
7c52128
 
 
 
 
 
 
 
 
 
c6546ad
 
 
 
 
 
 
 
 
 
 
 
 
 
91fb4ef
7c52128
 
 
 
 
 
 
 
 
 
0d34ea8
 
 
7c52128
 
 
 
 
 
 
91fb4ef
 
 
c90af3c
 
91fb4ef
 
 
 
 
 
 
 
c90af3c
 
 
 
c6546ad
 
 
 
 
 
 
 
 
 
 
 
 
c90af3c
 
 
c6546ad
 
 
 
 
 
 
 
 
 
c90af3c
 
 
 
c6546ad
 
 
 
 
 
 
 
 
 
 
 
 
c90af3c
 
 
 
 
 
 
 
 
c6546ad
 
 
 
 
 
 
 
 
 
 
 
 
91fb4ef
 
d464085
c90af3c
 
 
d464085
c6546ad
 
 
 
c90af3c
c6546ad
c90af3c
7c52128
 
 
 
c90af3c
 
 
d464085
c6546ad
 
 
 
 
 
c90af3c
7c52128
 
 
 
c90af3c
 
 
d464085
c90af3c
c6546ad
 
 
 
 
c90af3c
7c52128
 
 
 
d464085
 
 
 
c6546ad
 
 
 
d464085
7c52128
 
 
 
d464085
 
 
 
 
 
c6546ad
 
d464085
c6546ad
d464085
7c52128
 
 
 
d464085
 
 
 
 
 
c6546ad
 
 
 
d464085
7c52128
 
 
 
c90af3c
 
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
d2662cc
91fb4ef
 
 
 
 
 
 
 
 
 
 
303e22c
91fb4ef
c6546ad
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
c6546ad
91fb4ef
 
7c52128
c6546ad
 
91fb4ef
 
 
c6546ad
91fb4ef
 
 
 
 
 
 
7c52128
91fb4ef
 
7c52128
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
c90af3c
91fb4ef
 
 
 
 
 
 
c6546ad
91fb4ef
 
d2662cc
91fb4ef
c6546ad
 
c90af3c
c6546ad
d464085
 
91fb4ef
 
 
c90af3c
91fb4ef
 
 
 
 
 
 
c6546ad
 
91fb4ef
d2662cc
91fb4ef
c6546ad
 
c90af3c
c6546ad
d464085
 
 
 
 
 
 
 
 
 
 
 
 
c6546ad
d464085
 
d2662cc
d464085
 
c6546ad
d464085
 
 
 
 
 
 
 
 
 
 
 
 
c6546ad
d464085
 
d2662cc
d464085
 
 
 
 
c6546ad
d464085
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
d2662cc
 
91fb4ef
 
 
 
d464085
 
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
1042322
 
 
91fb4ef
 
 
 
 
 
 
 
 
c8cb798
91fb4ef
 
d464085
91fb4ef
 
 
c6546ad
d464085
 
94070f8
d464085
 
 
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
import os
from dataclasses import dataclass, field
from typing import Dict, Any, Optional, List, Tuple
from pathlib import Path
import torch
import math

def parse_bool_env(env_value: Optional[str]) -> bool:
    """Parse environment variable string to boolean
    
    Handles various true/false string representations:
    - True: "true", "True", "TRUE", "1", etc
    - False: "false", "False", "FALSE", "0", "", None
    """
    if not env_value:
        return False
    return str(env_value).lower() in ('true', '1', 't', 'y', 'yes')

HF_API_TOKEN = os.getenv("HF_API_TOKEN")
ASK_USER_TO_DUPLICATE_SPACE = parse_bool_env(os.getenv("ASK_USER_TO_DUPLICATE_SPACE"))

# Base storage path
STORAGE_PATH = Path(os.environ.get('STORAGE_PATH', '.data'))

# Subdirectories for different data types
VIDEOS_TO_SPLIT_PATH = STORAGE_PATH / "videos_to_split"    # Raw uploaded/downloaded files
STAGING_PATH = STORAGE_PATH / "staging"                    # This is where files that are captioned or need captioning are waiting
TRAINING_PATH = STORAGE_PATH / "training"                  # Folder containing the final training dataset
TRAINING_VIDEOS_PATH = TRAINING_PATH / "videos"            # Captioned clips ready for training
MODEL_PATH = STORAGE_PATH / "model"                        # Model checkpoints and files
OUTPUT_PATH = STORAGE_PATH / "output"                  # Training outputs and logs
LOG_FILE_PATH = OUTPUT_PATH / "last_session.log"

# On the production server we can afford to preload the big model
PRELOAD_CAPTIONING_MODEL = parse_bool_env(os.environ.get('PRELOAD_CAPTIONING_MODEL'))

CAPTIONING_MODEL = "lmms-lab/LLaVA-Video-7B-Qwen2"

DEFAULT_PROMPT_PREFIX = "In the style of TOK, "

# This is only use to debug things in local
USE_MOCK_CAPTIONING_MODEL = parse_bool_env(os.environ.get('USE_MOCK_CAPTIONING_MODEL'))

DEFAULT_CAPTIONING_BOT_INSTRUCTIONS = "Please write a full video description. Be synthetic and methodically list camera (close-up shot, medium-shot..), genre (music video, horror movie scene, video game footage, go pro footage, japanese anime, noir film, science-fiction, action movie, documentary..), characters (physical appearance, look, skin, facial features, haircut, clothing), scene (action, positions, movements), location (indoor, outdoor, place, building, country..), time and lighting (natural, golden hour, night time, LED lights, kelvin temperature etc), weather and climate (dusty, rainy, fog, haze, snowing..), era/settings."
       
# Create directories
STORAGE_PATH.mkdir(parents=True, exist_ok=True)
VIDEOS_TO_SPLIT_PATH.mkdir(parents=True, exist_ok=True)
STAGING_PATH.mkdir(parents=True, exist_ok=True)
TRAINING_PATH.mkdir(parents=True, exist_ok=True)
TRAINING_VIDEOS_PATH.mkdir(parents=True, exist_ok=True)
MODEL_PATH.mkdir(parents=True, exist_ok=True)
OUTPUT_PATH.mkdir(parents=True, exist_ok=True)

# To secure public instances
VMS_ADMIN_PASSWORD = os.environ.get('VMS_ADMIN_PASSWORD', '')

# Image normalization settings
NORMALIZE_IMAGES_TO = os.environ.get('NORMALIZE_IMAGES_TO', 'png').lower()
if NORMALIZE_IMAGES_TO not in ['png', 'jpg']:
    raise ValueError("NORMALIZE_IMAGES_TO must be either 'png' or 'jpg'")
JPEG_QUALITY = int(os.environ.get('JPEG_QUALITY', '97'))

MODEL_TYPES = {
    "HunyuanVideo": "hunyuan_video", 
    "LTX-Video": "ltx_video",
    "Wan": "wan"
}

# Training types
TRAINING_TYPES = {
    "LoRA Finetune": "lora",
    "Full Finetune": "full-finetune"
}

# Model versions for each model type
MODEL_VERSIONS = {
    "wan": {
        "Wan-AI/Wan2.1-T2V-1.3B-Diffusers": {
            "name": "Wan 2.1 T2V 1.3B (text-only, smaller)",
            "type": "text-to-video",
            "description": "Faster, smaller model (1.3B parameters)"
        },
        "Wan-AI/Wan2.1-T2V-14B-Diffusers": {
            "name": "Wan 2.1 T2V 14B (text-only, larger)",
            "type": "text-to-video",
            "description": "Higher quality but slower (14B parameters)"
        },
        "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers": {
            "name": "Wan 2.1 I2V 480p (image+text)",
            "type": "image-to-video",
            "description": "Image conditioning at 480p resolution"
        },
        "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers": {
            "name": "Wan 2.1 I2V 720p (image+text)",
            "type": "image-to-video",
            "description": "Image conditioning at 720p resolution"
        }
    },
    "ltx_video": {
        "Lightricks/LTX-Video": {
            "name": "LTX Video (official)",
            "type": "text-to-video",
            "description": "Official LTX Video model"
        }
    },
    "hunyuan_video": {
        "hunyuanvideo-community/HunyuanVideo": {
            "name": "Hunyuan Video (official)",
            "type": "text-to-video",
            "description": "Official Hunyuan Video model"
        }
    }
}

DEFAULT_SEED = 42

DEFAULT_REMOVE_COMMON_LLM_CAPTION_PREFIXES = True

DEFAULT_DATASET_TYPE = "video"
DEFAULT_TRAINING_TYPE = "lora"

DEFAULT_RESHAPE_MODE = "bicubic"

DEFAULT_MIXED_PRECISION = "bf16"



DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS = 200

DEFAULT_LORA_RANK = 128
DEFAULT_LORA_RANK_STR = str(DEFAULT_LORA_RANK)

DEFAULT_LORA_ALPHA = 128
DEFAULT_LORA_ALPHA_STR = str(DEFAULT_LORA_ALPHA)

DEFAULT_CAPTION_DROPOUT_P = 0.05

DEFAULT_BATCH_SIZE = 1

DEFAULT_LEARNING_RATE = 3e-5

# GPU SETTINGS
DEFAULT_NUM_GPUS = 1
DEFAULT_MAX_GPUS = min(8, torch.cuda.device_count() if torch.cuda.is_available() else 1)
DEFAULT_PRECOMPUTATION_ITEMS = 512

DEFAULT_NB_TRAINING_STEPS = 1000

# For this value, it is recommended to use about 20 to 40% of the number of training steps
DEFAULT_NB_LR_WARMUP_STEPS = math.ceil(0.20 * DEFAULT_NB_TRAINING_STEPS)  # 20% of training steps

# Whether to automatically restart a training job after a server reboot or not
DEFAULT_AUTO_RESUME = False

# For validation
DEFAULT_VALIDATION_NB_STEPS = 50
DEFAULT_VALIDATION_HEIGHT = 512
DEFAULT_VALIDATION_WIDTH = 768
DEFAULT_VALIDATION_NB_FRAMES = 49
DEFAULT_VALIDATION_FRAMERATE = 8

# it is best to use resolutions that are powers of 8
# The resolution should be divisible by 32
# so we cannot use 1080, 540 etc as they are not divisible by 32
MEDIUM_19_9_RATIO_WIDTH = 768 # 32 * 24
MEDIUM_19_9_RATIO_HEIGHT = 512 # 32 * 16

# 1920 = 32 * 60 (divided by 2: 960 = 32 * 30)
# 1920 = 32 * 60 (divided by 2: 960 = 32 * 30)
# 1056 = 32 * 33 (divided by 2: 544 = 17 * 32)
# 1024 = 32 * 32 (divided by 2: 512 = 16 * 32)
# it is important that the resolution buckets properly cover the training dataset,
# or else that we exclude from the dataset videos that are out of this range
# right now, finetrainers will crash if that happens, so the workaround is to have more buckets in here

NB_FRAMES_1 = 1  #  1
NB_FRAMES_9 = 8 + 1 # 8 + 1
NB_FRAMES_17 = 8 * 2 + 1 # 16 + 1
NB_FRAMES_33 = 8 * 4 + 1  # 32 + 1
NB_FRAMES_49 = 8 * 6 + 1 # 48 + 1
NB_FRAMES_65 = 8 * 8 + 1  # 64 + 1
NB_FRAMES_81 = 8 * 10 + 1  # 80 + 1
NB_FRAMES_97 = 8 * 12 + 1  # 96 + 1
NB_FRAMES_113 = 8 * 14 + 1  # 112 + 1
NB_FRAMES_129 = 8 * 16 + 1  # 128 + 1
NB_FRAMES_145 = 8 * 18 + 1  # 144 + 1
NB_FRAMES_161  = 8 * 20 + 1  # 160 + 1
NB_FRAMES_177 = 8 * 22 + 1  # 176 + 1
NB_FRAMES_193 = 8 * 24 + 1  # 192 + 1
NB_FRAMES_225 = 8 * 28 + 1  # 224 + 1
NB_FRAMES_257 = 8 * 32 + 1  # 256 + 1
# 256 isn't a lot by the way, especially with 60 FPS videos.. 
# can we crank it and put more frames in here?

NB_FRAMES_273 = 8 * 34 + 1  # 272 + 1
NB_FRAMES_289 = 8 * 36 + 1  # 288 + 1
NB_FRAMES_305 = 8 * 38 + 1  # 304 + 1
NB_FRAMES_321 = 8 * 40 + 1  # 320 + 1
NB_FRAMES_337 = 8 * 42 + 1  # 336 + 1
NB_FRAMES_353 = 8 * 44 + 1  # 352 + 1
NB_FRAMES_369 = 8 * 46 + 1  # 368 + 1
NB_FRAMES_385 = 8 * 48 + 1  # 384 + 1
NB_FRAMES_401 = 8 * 50 + 1  # 400 + 1

SMALL_TRAINING_BUCKETS = [
    (NB_FRAMES_1,   MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 1
    (NB_FRAMES_9,   MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 8 + 1
    (NB_FRAMES_17,  MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 16 + 1
    (NB_FRAMES_33,  MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 32 + 1
    (NB_FRAMES_49,  MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 48 + 1
    (NB_FRAMES_65,  MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 64 + 1
    (NB_FRAMES_81,  MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 80 + 1
    (NB_FRAMES_97,  MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 96 + 1
    (NB_FRAMES_113, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 112 + 1
    (NB_FRAMES_129, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 128 + 1
    (NB_FRAMES_145, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 144 + 1
    (NB_FRAMES_161, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 160 + 1
    (NB_FRAMES_177, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 176 + 1
    (NB_FRAMES_193, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 192 + 1
    (NB_FRAMES_225, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 224 + 1
    (NB_FRAMES_257, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 256 + 1
]

MEDIUM_19_9_RATIO_WIDTH = 928 # 32 * 29
MEDIUM_19_9_RATIO_HEIGHT = 512 # 32 * 16

MEDIUM_19_9_RATIO_BUCKETS = [
    (NB_FRAMES_1,   MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), #  1
    (NB_FRAMES_9,   MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 8 + 1
    (NB_FRAMES_17,  MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 16 + 1
    (NB_FRAMES_33,  MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 32 + 1
    (NB_FRAMES_49,  MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 48 + 1
    (NB_FRAMES_65,  MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 64 + 1
    (NB_FRAMES_81,  MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 80 + 1
    (NB_FRAMES_97,  MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 96 + 1
    (NB_FRAMES_113, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 112 + 1
    (NB_FRAMES_129, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 128 + 1
    (NB_FRAMES_145, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 144 + 1
    (NB_FRAMES_161, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 160 + 1
    (NB_FRAMES_177, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 176 + 1
    (NB_FRAMES_193, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 192 + 1
    (NB_FRAMES_225, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 224 + 1
    (NB_FRAMES_257, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 256 + 1
]

# Updated training presets to include Wan-2.1-T2V and support both LoRA and full-finetune
TRAINING_PRESETS = {
    "HunyuanVideo (normal)": {
        "model_type": "hunyuan_video",
        "training_type": "lora",
        "lora_rank": DEFAULT_LORA_RANK_STR,
        "lora_alpha": DEFAULT_LORA_ALPHA_STR,
        "train_steps": DEFAULT_NB_TRAINING_STEPS,
        "batch_size": DEFAULT_BATCH_SIZE,
        "learning_rate": 2e-5,
        "save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
        "training_buckets": SMALL_TRAINING_BUCKETS,
        "flow_weighting_scheme": "none",
        "num_gpus": DEFAULT_NUM_GPUS,
        "precomputation_items": DEFAULT_PRECOMPUTATION_ITEMS,
        "lr_warmup_steps": DEFAULT_NB_LR_WARMUP_STEPS,
    },
    "LTX-Video (normal)": {
        "model_type": "ltx_video", 
        "training_type": "lora",
        "lora_rank": DEFAULT_LORA_RANK_STR,
        "lora_alpha": DEFAULT_LORA_ALPHA_STR,
        "train_steps": DEFAULT_NB_TRAINING_STEPS,
        "batch_size": DEFAULT_BATCH_SIZE,
        "learning_rate": DEFAULT_LEARNING_RATE,
        "save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
        "training_buckets": SMALL_TRAINING_BUCKETS,
        "flow_weighting_scheme": "none",
        "num_gpus": DEFAULT_NUM_GPUS,
        "precomputation_items": DEFAULT_PRECOMPUTATION_ITEMS,
        "lr_warmup_steps": DEFAULT_NB_LR_WARMUP_STEPS,
    },
    "LTX-Video (16:9, HQ)": {
        "model_type": "ltx_video",
        "training_type": "lora",
        "lora_rank": "256", 
        "lora_alpha": DEFAULT_LORA_ALPHA_STR,
        "train_steps": DEFAULT_NB_TRAINING_STEPS,
        "batch_size": DEFAULT_BATCH_SIZE,
        "learning_rate": DEFAULT_LEARNING_RATE,
        "save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
        "training_buckets": MEDIUM_19_9_RATIO_BUCKETS,
        "flow_weighting_scheme": "logit_normal",
        "num_gpus": DEFAULT_NUM_GPUS,
        "precomputation_items": DEFAULT_PRECOMPUTATION_ITEMS,
        "lr_warmup_steps": DEFAULT_NB_LR_WARMUP_STEPS,
    },
    "LTX-Video (Full Finetune)": {
        "model_type": "ltx_video",
        "training_type": "full-finetune",
        "train_steps": DEFAULT_NB_TRAINING_STEPS,
        "batch_size": DEFAULT_BATCH_SIZE,
        "learning_rate": DEFAULT_LEARNING_RATE,
        "save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
        "training_buckets": SMALL_TRAINING_BUCKETS,
        "flow_weighting_scheme": "logit_normal",
        "num_gpus": DEFAULT_NUM_GPUS,
        "precomputation_items": DEFAULT_PRECOMPUTATION_ITEMS,
        "lr_warmup_steps": DEFAULT_NB_LR_WARMUP_STEPS,
    },
    "Wan-2.1-T2V (normal)": {
        "model_type": "wan",
        "training_type": "lora",
        "lora_rank": "32",
        "lora_alpha": "32",
        "train_steps": DEFAULT_NB_TRAINING_STEPS,
        "batch_size": DEFAULT_BATCH_SIZE,
        "learning_rate": 5e-5,
        "save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
        "training_buckets": SMALL_TRAINING_BUCKETS,
        "flow_weighting_scheme": "logit_normal",
        "num_gpus": DEFAULT_NUM_GPUS,
        "precomputation_items": DEFAULT_PRECOMPUTATION_ITEMS,
        "lr_warmup_steps": DEFAULT_NB_LR_WARMUP_STEPS,
    },
    "Wan-2.1-T2V (HQ)": {
        "model_type": "wan",
        "training_type": "lora",
        "lora_rank": "64",
        "lora_alpha": "64",
        "train_steps": DEFAULT_NB_TRAINING_STEPS,
        "batch_size": DEFAULT_BATCH_SIZE,
        "learning_rate": DEFAULT_LEARNING_RATE,
        "save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
        "training_buckets": MEDIUM_19_9_RATIO_BUCKETS,
        "flow_weighting_scheme": "logit_normal",
        "num_gpus": DEFAULT_NUM_GPUS,
        "precomputation_items": DEFAULT_PRECOMPUTATION_ITEMS,
        "lr_warmup_steps": DEFAULT_NB_LR_WARMUP_STEPS,
    }
}

@dataclass
class TrainingConfig:
    """Configuration class for finetrainers training"""
    
    # Required arguments must come first
    model_name: str
    pretrained_model_name_or_path: str
    data_root: str
    output_dir: str
    
    # Optional arguments follow
    revision: Optional[str] = None
    version: Optional[str] = None
    cache_dir: Optional[str] = None
    
    # Dataset arguments

    # note: video_column and caption_column serve a dual purpose,
    # when using the CSV mode they have to be CSV column names,
    # otherwise they have to be filename (relative to the data_root dir path)
    video_column: str = "videos.txt"
    caption_column: str = "prompts.txt"

    id_token: Optional[str] = None
    video_resolution_buckets: List[Tuple[int, int, int]] = field(default_factory=lambda: SMALL_TRAINING_BUCKETS)
    video_reshape_mode: str = "center"
    caption_dropout_p: float = DEFAULT_CAPTION_DROPOUT_P
    caption_dropout_technique: str = "empty"
    precompute_conditions: bool = False
    
    # Diffusion arguments
    flow_resolution_shifting: bool = False
    flow_weighting_scheme: str = "none"
    flow_logit_mean: float = 0.0
    flow_logit_std: float = 1.0
    flow_mode_scale: float = 1.29
    
    # Training arguments
    training_type: str = "lora"
    seed: int = DEFAULT_SEED
    mixed_precision: str = "bf16"
    batch_size: int = 1
    train_steps: int = DEFAULT_NB_TRAINING_STEPS
    lora_rank: int = DEFAULT_LORA_RANK
    lora_alpha: int = DEFAULT_LORA_ALPHA
    target_modules: List[str] = field(default_factory=lambda: ["to_q", "to_k", "to_v", "to_out.0"])
    gradient_accumulation_steps: int = 1
    gradient_checkpointing: bool = True
    checkpointing_steps: int = DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS
    checkpointing_limit: Optional[int] = 2
    resume_from_checkpoint: Optional[str] = None
    enable_slicing: bool = True
    enable_tiling: bool = True

    # Optimizer arguments
    optimizer: str = "adamw"
    lr: float = DEFAULT_LEARNING_RATE
    scale_lr: bool = False
    lr_scheduler: str = "constant_with_warmup"
    lr_warmup_steps: int = DEFAULT_NB_LR_WARMUP_STEPS
    lr_num_cycles: int = 1
    lr_power: float = 1.0
    beta1: float = 0.9
    beta2: float = 0.95
    weight_decay: float = 1e-4
    epsilon: float = 1e-8
    max_grad_norm: float = 1.0

    # Miscellaneous arguments
    tracker_name: str = "finetrainers"
    report_to: str = "wandb"
    nccl_timeout: int = 1800

    @classmethod
    def hunyuan_video_lora(cls, data_path: str, output_path: str, buckets=None) -> 'TrainingConfig':
        """Configuration for Hunyuan video-to-video LoRA training"""
        return cls(
            model_name="hunyuan_video",
            pretrained_model_name_or_path="hunyuanvideo-community/HunyuanVideo",
            data_root=data_path,
            output_dir=output_path,
            batch_size=1,
            train_steps=DEFAULT_NB_TRAINING_STEPS,
            lr=2e-5,
            gradient_checkpointing=True,
            id_token=None,
            gradient_accumulation_steps=1,
            lora_rank=DEFAULT_LORA_RANK,
            lora_alpha=DEFAULT_LORA_ALPHA,
            video_resolution_buckets=buckets or SMALL_TRAINING_BUCKETS,
            caption_dropout_p=DEFAULT_CAPTION_DROPOUT_P,
            flow_weighting_scheme="none",  # Hunyuan specific
            training_type="lora"
        )
    
    @classmethod
    def ltx_video_lora(cls, data_path: str, output_path: str, buckets=None) -> 'TrainingConfig':
        """Configuration for LTX-Video LoRA training"""
        return cls(
            model_name="ltx_video",
            pretrained_model_name_or_path="Lightricks/LTX-Video",
            data_root=data_path,
            output_dir=output_path,
            batch_size=1,
            train_steps=DEFAULT_NB_TRAINING_STEPS,
            lr=DEFAULT_LEARNING_RATE,
            gradient_checkpointing=True,
            id_token=None,
            gradient_accumulation_steps=4,
            lora_rank=DEFAULT_LORA_RANK,
            lora_alpha=DEFAULT_LORA_ALPHA,
            video_resolution_buckets=buckets or SMALL_TRAINING_BUCKETS,
            caption_dropout_p=DEFAULT_CAPTION_DROPOUT_P,
            flow_weighting_scheme="logit_normal",  # LTX specific
            training_type="lora"
        )
        
    @classmethod
    def ltx_video_full_finetune(cls, data_path: str, output_path: str, buckets=None) -> 'TrainingConfig':
        """Configuration for LTX-Video full finetune training"""
        return cls(
            model_name="ltx_video",
            pretrained_model_name_or_path="Lightricks/LTX-Video",
            data_root=data_path,
            output_dir=output_path,
            batch_size=1,
            train_steps=DEFAULT_NB_TRAINING_STEPS,
            lr=1e-5,
            gradient_checkpointing=True,
            id_token=None,
            gradient_accumulation_steps=1,
            video_resolution_buckets=buckets or SMALL_TRAINING_BUCKETS,
            caption_dropout_p=DEFAULT_CAPTION_DROPOUT_P,
            flow_weighting_scheme="logit_normal",  # LTX specific
            training_type="full-finetune"
        )
        
    @classmethod
    def wan_lora(cls, data_path: str, output_path: str, buckets=None) -> 'TrainingConfig':
        """Configuration for Wan T2V LoRA training"""
        return cls(
            model_name="wan",
            pretrained_model_name_or_path="Wan-AI/Wan2.1-T2V-1.3B-Diffusers",
            data_root=data_path,
            output_dir=output_path,
            batch_size=1,
            train_steps=DEFAULT_NB_TRAINING_STEPS,
            lr=5e-5,
            gradient_checkpointing=True,
            id_token=None,
            gradient_accumulation_steps=1,
            lora_rank=32,
            lora_alpha=32,
            target_modules=["blocks.*(to_q|to_k|to_v|to_out.0)"],  # Wan-specific target modules
            video_resolution_buckets=buckets or SMALL_TRAINING_BUCKETS,
            caption_dropout_p=DEFAULT_CAPTION_DROPOUT_P,
            flow_weighting_scheme="logit_normal",  # Wan specific
            training_type="lora"
        )

    def to_args_list(self) -> List[str]:
        """Convert config to command line arguments list"""
        args = []
        
        # Model arguments 

        # Add model_name (required argument)
        args.extend(["--model_name", self.model_name])
        
        args.extend(["--pretrained_model_name_or_path", self.pretrained_model_name_or_path])
        if self.revision:
            args.extend(["--revision", self.revision])
        if self.version:
            args.extend(["--variant", self.version]) 
        if self.cache_dir:
            args.extend(["--cache_dir", self.cache_dir])

        # Dataset arguments
        args.extend(["--dataset_config", self.data_root])
        
        # Add ID token if specified
        if self.id_token:
            args.extend(["--id_token", self.id_token])
            
        # Add video resolution buckets
        if self.video_resolution_buckets:
            bucket_strs = [f"{f}x{h}x{w}" for f, h, w in self.video_resolution_buckets]
            args.extend(["--video_resolution_buckets"] + bucket_strs)
            
        args.extend(["--caption_dropout_p", str(self.caption_dropout_p)])
        args.extend(["--caption_dropout_technique", self.caption_dropout_technique])
        if self.precompute_conditions:
            args.append("--precompute_conditions")

        if hasattr(self, 'precomputation_items') and self.precomputation_items:
            args.extend(["--precomputation_items", str(self.precomputation_items)])
            
        # Diffusion arguments
        if self.flow_resolution_shifting:
            args.append("--flow_resolution_shifting")
        args.extend(["--flow_weighting_scheme", self.flow_weighting_scheme])
        args.extend(["--flow_logit_mean", str(self.flow_logit_mean)])
        args.extend(["--flow_logit_std", str(self.flow_logit_std)])
        args.extend(["--flow_mode_scale", str(self.flow_mode_scale)])

        # Training arguments
        args.extend(["--training_type",self.training_type])
        args.extend(["--seed", str(self.seed)])
        
        # We don't use this, because mixed precision is handled by accelerate launch, not by the training script itself.
        #args.extend(["--mixed_precision", self.mixed_precision])
        
        args.extend(["--batch_size", str(self.batch_size)])
        args.extend(["--train_steps", str(self.train_steps)])
        
        # LoRA specific arguments
        if self.training_type == "lora":
            args.extend(["--rank", str(self.lora_rank)])
            args.extend(["--lora_alpha", str(self.lora_alpha)])
            args.extend(["--target_modules"] + self.target_modules)
            
        args.extend(["--gradient_accumulation_steps", str(self.gradient_accumulation_steps)])
        if self.gradient_checkpointing:
            args.append("--gradient_checkpointing")
        args.extend(["--checkpointing_steps", str(self.checkpointing_steps)])
        if self.checkpointing_limit:
            args.extend(["--checkpointing_limit", str(self.checkpointing_limit)])
        if self.resume_from_checkpoint:
            args.extend(["--resume_from_checkpoint", self.resume_from_checkpoint])
        if self.enable_slicing:
            args.append("--enable_slicing")
        if self.enable_tiling:
            args.append("--enable_tiling")

        # Optimizer arguments
        args.extend(["--optimizer", self.optimizer])
        args.extend(["--lr", str(self.lr)])
        if self.scale_lr:
            args.append("--scale_lr")
        args.extend(["--lr_scheduler", self.lr_scheduler])
        args.extend(["--lr_warmup_steps", str(self.lr_warmup_steps)])
        args.extend(["--lr_num_cycles", str(self.lr_num_cycles)])
        args.extend(["--lr_power", str(self.lr_power)])
        args.extend(["--beta1", str(self.beta1)])
        args.extend(["--beta2", str(self.beta2)])
        args.extend(["--weight_decay", str(self.weight_decay)])
        args.extend(["--epsilon", str(self.epsilon)])
        args.extend(["--max_grad_norm", str(self.max_grad_norm)])

        # Miscellaneous arguments
        args.extend(["--tracker_name", self.tracker_name])
        args.extend(["--output_dir", self.output_dir])
        args.extend(["--report_to", self.report_to])
        args.extend(["--nccl_timeout", str(self.nccl_timeout)])

        # normally this is disabled by default, but there was a bug in finetrainers
        # so I had to fix it in trainer.py to make sure we check for push_to-hub
        #args.append("--push_to_hub")
        #args.extend(["--hub_token", str(False)])
        #args.extend(["--hub_model_id", str(False)])

        # If you are using LLM-captioned videos, it is common to see many unwanted starting phrases like
        # "In this video, ...", "This video features ...", etc.
        # To remove a simple subset of these phrases, you can specify
        # --remove_common_llm_caption_prefixes when starting training.
        args.append("--remove_common_llm_caption_prefixes")

        return args