|
import os |
|
import gradio as gr |
|
import requests |
|
import pandas as pd |
|
from langchain_core.messages import HumanMessage |
|
from tools import build_graph |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
class BasicAgent: |
|
|
|
def __init__(self, csv_file_path: str = "embedding_database.csv"): |
|
print("BasicAgent initialized.") |
|
self.graph = build_graph(csv_file_path=csv_file_path) |
|
|
|
def __call__(self, question: str) -> str: |
|
print(f"Agent received question (first 50 chars): {question[:50]}...") |
|
|
|
|
|
messages = [HumanMessage(content=question)] |
|
messages = self.graph.invoke({"messages": messages}) |
|
|
|
|
|
answer = messages['messages'][-1].content |
|
if answer.startswith("FINAL ANSWER: "): |
|
return answer[14:] |
|
else: |
|
|
|
lines = answer.split('\n') |
|
for line in lines: |
|
if line.strip().startswith("FINAL ANSWER:"): |
|
return line.strip()[14:].strip() |
|
return answer |
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
if not profile: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
username = f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Local Development" |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
try: |
|
agent = BasicAgent() |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
|
|
if not questions_data: |
|
return "Fetched questions list is empty or invalid format.", None |
|
|
|
print(f"Fetched {len(questions_data)} questions.") |
|
except Exception as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
|
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
|
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
|
|
try: |
|
submitted_answer = agent(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"Submitted Answer": submitted_answer |
|
}) |
|
print(f"Completed task {task_id}: {submitted_answer}") |
|
|
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"Submitted Answer": f"AGENT ERROR: {e}" |
|
}) |
|
|
|
if not answers_payload: |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
submission_data = { |
|
"username": username.strip(), |
|
"agent_code": agent_code, |
|
"answers": answers_payload |
|
} |
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
|
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
|
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
|
|
except Exception as e: |
|
print(f"Submission failed: {e}") |
|
status_message = f"Submission Failed: {e}" |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown(""" |
|
**Instructions:** |
|
1. Make sure your `embeddings.csv` file is in the same directory |
|
2. Log in to your Hugging Face account using the button below |
|
3. Click 'Run Evaluation & Submit All Answers' to start the evaluation |
|
|
|
**Note:** The evaluation process may take several minutes depending on the number of questions. |
|
""") |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary") |
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host = os.getenv("SPACE_HOST") |
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if space_host: |
|
print(f"✅ SPACE_HOST found: {space_host}") |
|
print(f" Runtime URL: https://{space_host}.hf.space") |
|
else: |
|
print("ℹ️ Running locally") |
|
|
|
if space_id: |
|
print(f"✅ SPACE_ID found: {space_id}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id}") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
print("Launching Gradio Interface...") |
|
|
|
demo.launch(debug=True, share=False) |