jarguello76's picture
Update app.py
2103635 verified
raw
history blame
6.51 kB
import os
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from tools import build_graph
# Constants
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class BasicAgent:
def __init__(self, csv_file_path: str = "embedding_database.csv"):
print("BasicAgent initialized.")
self.graph = build_graph(csv_file_path=csv_file_path)
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
# Wrap the question in a HumanMessage
messages = [HumanMessage(content=question)]
messages = self.graph.invoke({"messages": messages})
# Extract answer and remove "FINAL ANSWER: " prefix
answer = messages['messages'][-1].content
if answer.startswith("FINAL ANSWER: "):
return answer[14:]
else:
# Look for FINAL ANSWER in the response
lines = answer.split('\n')
for line in lines:
if line.strip().startswith("FINAL ANSWER:"):
return line.strip()[14:].strip()
return answer
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
if not profile:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
username = f"{profile.username}"
print(f"User logged in: {username}")
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Local Development"
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = BasicAgent() # Make sure your CSV file is named "embeddings.csv" or update the path
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer
})
print(f"Completed task {task_id}: {submitted_answer}")
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"
})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
print(f"Submission failed: {e}")
status_message = f"Submission Failed: {e}"
results_df = pd.DataFrame(results_log)
return status_message, results_df
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Make sure your `embeddings.csv` file is in the same directory
2. Log in to your Hugging Face account using the button below
3. Click 'Run Evaluation & Submit All Answers' to start the evaluation
**Note:** The evaluation process may take several minutes depending on the number of questions.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
if space_host:
print(f"✅ SPACE_HOST found: {space_host}")
print(f" Runtime URL: https://{space_host}.hf.space")
else:
print("ℹ️ Running locally")
if space_id:
print(f"✅ SPACE_ID found: {space_id}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id}")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface...")
demo.launch(debug=True, share=False)