File size: 6,506 Bytes
10e9b7d eccf8e4 3c4371f ca526ca 6c8d237 10e9b7d 6c8d237 ca526ca 179e9c0 ca526ca 6c8d237 c884838 ca526ca 2103635 6c8d237 31243f4 6c8d237 ca526ca 6c8d237 ca526ca 6c8d237 31243f4 ca526ca 31243f4 6c8d237 3c4371f 7d65c66 6c8d237 7e4a06b 31243f4 6c8d237 31243f4 6c8d237 31243f4 3c4371f 31243f4 6c8d237 31243f4 eccf8e4 31243f4 7d65c66 31243f4 6c8d237 31243f4 6c8d237 31243f4 6c8d237 31243f4 6c8d237 7d65c66 ca526ca 6c8d237 ca526ca 31243f4 6c8d237 31243f4 6c8d237 31243f4 7d65c66 6c8d237 31243f4 6c8d237 31243f4 6c8d237 31243f4 e80aab9 7d65c66 e80aab9 6c8d237 31243f4 e80aab9 3c4371f e80aab9 6c8d237 e80aab9 31243f4 6c8d237 7d65c66 6c8d237 31243f4 e80aab9 31243f4 6c8d237 e514fd7 6c8d237 7e4a06b 6c8d237 9088b99 7d65c66 6c8d237 31243f4 e80aab9 3c4371f 6c8d237 3c4371f 6c8d237 3c4371f 6c8d237 ca526ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import os
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from tools import build_graph
# Constants
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class BasicAgent:
def __init__(self, csv_file_path: str = "embedding_database.csv"):
print("BasicAgent initialized.")
self.graph = build_graph(csv_file_path=csv_file_path)
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
# Wrap the question in a HumanMessage
messages = [HumanMessage(content=question)]
messages = self.graph.invoke({"messages": messages})
# Extract answer and remove "FINAL ANSWER: " prefix
answer = messages['messages'][-1].content
if answer.startswith("FINAL ANSWER: "):
return answer[14:]
else:
# Look for FINAL ANSWER in the response
lines = answer.split('\n')
for line in lines:
if line.strip().startswith("FINAL ANSWER:"):
return line.strip()[14:].strip()
return answer
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
if not profile:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
username = f"{profile.username}"
print(f"User logged in: {username}")
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Local Development"
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = BasicAgent() # Make sure your CSV file is named "embeddings.csv" or update the path
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer
})
print(f"Completed task {task_id}: {submitted_answer}")
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"
})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
print(f"Submission failed: {e}")
status_message = f"Submission Failed: {e}"
results_df = pd.DataFrame(results_log)
return status_message, results_df
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Make sure your `embeddings.csv` file is in the same directory
2. Log in to your Hugging Face account using the button below
3. Click 'Run Evaluation & Submit All Answers' to start the evaluation
**Note:** The evaluation process may take several minutes depending on the number of questions.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
if space_host:
print(f"✅ SPACE_HOST found: {space_host}")
print(f" Runtime URL: https://{space_host}.hf.space")
else:
print("ℹ️ Running locally")
if space_id:
print(f"✅ SPACE_ID found: {space_id}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id}")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface...")
demo.launch(debug=True, share=False) |