File size: 6,506 Bytes
10e9b7d
 
eccf8e4
3c4371f
ca526ca
6c8d237
10e9b7d
6c8d237
ca526ca
179e9c0
ca526ca
6c8d237
c884838
ca526ca
2103635
6c8d237
31243f4
 
6c8d237
 
ca526ca
 
6c8d237
 
ca526ca
6c8d237
 
 
 
 
 
 
 
 
 
 
31243f4
ca526ca
31243f4
 
6c8d237
3c4371f
7d65c66
6c8d237
 
 
 
 
 
 
7e4a06b
31243f4
 
6c8d237
31243f4
6c8d237
31243f4
3c4371f
31243f4
6c8d237
 
31243f4
eccf8e4
31243f4
7d65c66
31243f4
6c8d237
31243f4
6c8d237
 
31243f4
6c8d237
31243f4
 
6c8d237
7d65c66
 
ca526ca
6c8d237
ca526ca
31243f4
 
6c8d237
31243f4
 
 
6c8d237
31243f4
7d65c66
 
6c8d237
 
 
 
 
 
 
31243f4
6c8d237
 
 
 
 
 
 
31243f4
 
6c8d237
 
 
 
 
 
 
31243f4
e80aab9
7d65c66
e80aab9
 
6c8d237
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
6c8d237
e80aab9
31243f4
 
6c8d237
7d65c66
6c8d237
 
31243f4
 
e80aab9
 
31243f4
6c8d237
e514fd7
6c8d237
 
 
 
 
 
 
7e4a06b
6c8d237
 
9088b99
7d65c66
6c8d237
31243f4
 
 
e80aab9
 
 
3c4371f
6c8d237
 
 
 
 
 
 
3c4371f
6c8d237
 
 
 
 
 
3c4371f
6c8d237
 
ca526ca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from tools import build_graph

# Constants
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

class BasicAgent:
    
    def __init__(self, csv_file_path: str = "embedding_database.csv"):
        print("BasicAgent initialized.")
        self.graph = build_graph(csv_file_path=csv_file_path)
    
    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        
        # Wrap the question in a HumanMessage
        messages = [HumanMessage(content=question)]
        messages = self.graph.invoke({"messages": messages})
        
        # Extract answer and remove "FINAL ANSWER: " prefix
        answer = messages['messages'][-1].content
        if answer.startswith("FINAL ANSWER: "):
            return answer[14:]
        else:
            # Look for FINAL ANSWER in the response
            lines = answer.split('\n')
            for line in lines:
                if line.strip().startswith("FINAL ANSWER:"):
                    return line.strip()[14:].strip()
            return answer

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    if not profile:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None
    
    username = f"{profile.username}"
    print(f"User logged in: {username}")
    
    space_id = os.getenv("SPACE_ID")
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Local Development"
    
    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"
    
    try:
        agent = BasicAgent()  # Make sure your CSV file is named "embeddings.csv" or update the path
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    
    # Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        
        if not questions_data:
            return "Fetched questions list is empty or invalid format.", None
        
        print(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text, 
                "Submitted Answer": submitted_answer
            })
            print(f"Completed task {task_id}: {submitted_answer}")
            
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text, 
                "Submitted Answer": f"AGENT ERROR: {e}"
            })
    
    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
    
    submission_data = {
        "username": username.strip(), 
        "agent_code": agent_code, 
        "answers": answers_payload
    }
    
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
        
    except Exception as e:
        print(f"Submission failed: {e}")
        status_message = f"Submission Failed: {e}"
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown("""
        **Instructions:**
        1. Make sure your `embeddings.csv` file is in the same directory
        2. Log in to your Hugging Face account using the button below
        3. Click 'Run Evaluation & Submit All Answers' to start the evaluation
        
        **Note:** The evaluation process may take several minutes depending on the number of questions.
    """)
    
    gr.LoginButton()
    
    run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
    
    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    
    space_host = os.getenv("SPACE_HOST")
    space_id = os.getenv("SPACE_ID")
    
    if space_host:
        print(f"✅ SPACE_HOST found: {space_host}")
        print(f"   Runtime URL: https://{space_host}.hf.space")
    else:
        print("ℹ️  Running locally")
    
    if space_id:
        print(f"✅ SPACE_ID found: {space_id}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id}")
    
    print("-"*(60 + len(" App Starting ")) + "\n")
    print("Launching Gradio Interface...")
    
    demo.launch(debug=True, share=False)