Update app.py
Browse files
app.py
CHANGED
@@ -1,126 +1,47 @@
|
|
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import pandas as pd
|
5 |
-
from
|
6 |
-
from
|
7 |
-
import torch
|
8 |
-
from transformers import AutoTokenizer
|
9 |
-
from smolagents import DuckDuckGoSearchTool
|
10 |
-
# Import your custom tools from their modules
|
11 |
-
from tools import (
|
12 |
-
WeatherInfoTool, HubStatsTool,
|
13 |
-
CalculatorTool, CalendarTool, EmailTool, FileManagementTool,
|
14 |
-
DatabaseQueryTool, TranslationTool, TextToSpeechTool,
|
15 |
-
SpeechToTextTool, ImageRecognitionTool, NLPTool, APIIntegrationTool
|
16 |
-
)
|
17 |
-
from retriever import load_guest_dataset
|
18 |
|
19 |
-
# --- Constants ---
|
20 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
21 |
-
HUGGINGFACE_TOKEN = os.getenv("agents_token")
|
22 |
-
|
23 |
-
# # Initialize the Hugging Face model with better generation parameters
|
24 |
-
# model = TransformersModel(
|
25 |
-
# model_id="allenai/OLMo-2-0425-1B-Instruct",
|
26 |
-
# device="auto",
|
27 |
-
# # Add generation parameters to prevent loops
|
28 |
-
# generation_kwargs={
|
29 |
-
# "max_new_tokens": 512,
|
30 |
-
# "temperature": 0.7,
|
31 |
-
# "do_sample": True,
|
32 |
-
# "pad_token_id": None, # Will be set automatically
|
33 |
-
# "eos_token_id": None, # Will be set automatically
|
34 |
-
# "repetition_penalty": 1.1,
|
35 |
-
# "no_repeat_ngram_size": 3,
|
36 |
-
# }
|
37 |
-
# )
|
38 |
-
model = HfApiModel(
|
39 |
-
model_id="microsoft/DialoGPT-medium",
|
40 |
-
token=HUGGINGFACE_TOKEN
|
41 |
-
)
|
42 |
-
# Initialize the web search tool
|
43 |
-
search_tool = DuckDuckGoSearchTool()
|
44 |
|
45 |
-
# Initialize the weather tool
|
46 |
-
weather_info_tool = WeatherInfoTool()
|
47 |
|
48 |
-
#
|
49 |
-
|
50 |
-
|
51 |
-
# Initialize additional tools (only the most essential ones to avoid confusion)
|
52 |
-
calculator_tool = CalculatorTool()
|
53 |
-
calendar_tool = CalendarTool()
|
54 |
|
55 |
-
#
|
56 |
-
|
57 |
|
58 |
-
# Create AgentChen with essential tools only
|
59 |
-
AgentChen = CodeAgent(
|
60 |
-
tools=[
|
61 |
-
search_tool,
|
62 |
-
guest_info_tool,
|
63 |
-
calculator_tool,
|
64 |
-
weather_info_tool,
|
65 |
-
hub_stats_tool,
|
66 |
-
],
|
67 |
-
model=model,
|
68 |
-
add_base_tools=True, # Add any additional base tools
|
69 |
-
planning_interval=None, # Disable planning to reduce complexity
|
70 |
-
max_iterations=3, # Limit iterations to prevent loops
|
71 |
-
)
|
72 |
|
73 |
-
class
|
|
|
74 |
def __init__(self):
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
def __call__(self, question: str) -> str:
|
79 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
# Clean and prepare the question
|
87 |
-
question = question.strip()
|
88 |
-
if not question:
|
89 |
-
return "Error: Empty question received."
|
90 |
-
|
91 |
-
try:
|
92 |
-
# Use the CodeAgent to run the question with a timeout-like approach
|
93 |
-
print("Running agent...")
|
94 |
-
answer = self.agent.run(question)
|
95 |
-
|
96 |
-
# Ensure we get a string response
|
97 |
-
if answer is None:
|
98 |
-
answer = "No response generated."
|
99 |
-
else:
|
100 |
-
answer = str(answer).strip()
|
101 |
-
|
102 |
-
# Limit response length to prevent issues
|
103 |
-
if len(answer) > 1000:
|
104 |
-
answer = answer[:1000] + "... [truncated]"
|
105 |
-
|
106 |
-
print(f"Agent returning answer (first 100 chars): {answer[:100]}...")
|
107 |
-
return answer
|
108 |
-
|
109 |
-
except Exception as e:
|
110 |
-
error_msg = f"Error in agent execution: {str(e)}"
|
111 |
-
print(error_msg)
|
112 |
-
return error_msg
|
113 |
|
114 |
-
|
|
|
115 |
"""
|
116 |
-
Fetches all questions, runs the
|
117 |
and displays the results.
|
118 |
"""
|
119 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
120 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
121 |
-
|
122 |
if profile:
|
123 |
-
username
|
124 |
print(f"User logged in: {username}")
|
125 |
else:
|
126 |
print("User not logged in.")
|
@@ -130,13 +51,13 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
130 |
questions_url = f"{api_url}/questions"
|
131 |
submit_url = f"{api_url}/submit"
|
132 |
|
133 |
-
# 1. Instantiate Agent
|
134 |
try:
|
135 |
-
agent =
|
136 |
except Exception as e:
|
137 |
print(f"Error instantiating agent: {e}")
|
138 |
return f"Error initializing agent: {e}", None
|
139 |
-
|
140 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
141 |
print(agent_code)
|
142 |
|
@@ -146,57 +67,44 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
146 |
response = requests.get(questions_url, timeout=15)
|
147 |
response.raise_for_status()
|
148 |
questions_data = response.json()
|
149 |
-
|
150 |
if not questions_data:
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
print(f"Fetched {len(questions_data)} questions.")
|
155 |
except requests.exceptions.RequestException as e:
|
156 |
print(f"Error fetching questions: {e}")
|
157 |
return f"Error fetching questions: {e}", None
|
158 |
except requests.exceptions.JSONDecodeError as e:
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
except Exception as e:
|
163 |
print(f"An unexpected error occurred fetching questions: {e}")
|
164 |
return f"An unexpected error occurred fetching questions: {e}", None
|
165 |
|
166 |
-
# 3. Run your Agent
|
167 |
results_log = []
|
168 |
answers_payload = []
|
169 |
-
|
170 |
-
|
171 |
-
test_questions = questions_data[:5] # Only process first 5 questions
|
172 |
-
print(f"Running agent on {len(test_questions)} questions (limited for testing)...")
|
173 |
-
|
174 |
-
for i, item in enumerate(test_questions):
|
175 |
task_id = item.get("task_id")
|
176 |
question_text = item.get("question")
|
177 |
-
|
178 |
if not task_id or question_text is None:
|
179 |
print(f"Skipping item with missing task_id or question: {item}")
|
180 |
continue
|
181 |
-
|
182 |
-
print(f"Processing question {i+1}/{len(test_questions)}: {task_id}")
|
183 |
-
|
184 |
try:
|
185 |
submitted_answer = agent(question_text)
|
186 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
187 |
-
results_log.append({"Task ID": task_id, "Question": question_text
|
188 |
-
print(f"Successfully processed question {i+1}")
|
189 |
except Exception as e:
|
190 |
-
|
191 |
-
|
192 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": error_answer})
|
193 |
-
results_log.append({"Task ID": task_id, "Question": question_text[:100] + "...", "Submitted Answer": error_answer})
|
194 |
|
195 |
if not answers_payload:
|
196 |
print("Agent did not produce any answers to submit.")
|
197 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
198 |
|
199 |
-
# 4. Prepare Submission
|
200 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
201 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
202 |
print(status_update)
|
@@ -207,7 +115,6 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
207 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
208 |
response.raise_for_status()
|
209 |
result_data = response.json()
|
210 |
-
|
211 |
final_status = (
|
212 |
f"Submission Successful!\n"
|
213 |
f"User: {result_data.get('username')}\n"
|
@@ -218,7 +125,6 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
218 |
print("Submission successful.")
|
219 |
results_df = pd.DataFrame(results_log)
|
220 |
return final_status, results_df
|
221 |
-
|
222 |
except requests.exceptions.HTTPError as e:
|
223 |
error_detail = f"Server responded with status {e.response.status_code}."
|
224 |
try:
|
@@ -226,30 +132,27 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
226 |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
227 |
except requests.exceptions.JSONDecodeError:
|
228 |
error_detail += f" Response: {e.response.text[:500]}"
|
229 |
-
|
230 |
status_message = f"Submission Failed: {error_detail}"
|
231 |
print(status_message)
|
232 |
results_df = pd.DataFrame(results_log)
|
233 |
return status_message, results_df
|
234 |
-
|
235 |
except requests.exceptions.Timeout:
|
236 |
status_message = "Submission Failed: The request timed out."
|
237 |
print(status_message)
|
238 |
results_df = pd.DataFrame(results_log)
|
239 |
return status_message, results_df
|
240 |
-
|
241 |
except requests.exceptions.RequestException as e:
|
242 |
status_message = f"Submission Failed: Network error - {e}"
|
243 |
print(status_message)
|
244 |
results_df = pd.DataFrame(results_log)
|
245 |
return status_message, results_df
|
246 |
-
|
247 |
except Exception as e:
|
248 |
status_message = f"An unexpected error occurred during submission: {e}"
|
249 |
print(status_message)
|
250 |
results_df = pd.DataFrame(results_log)
|
251 |
return status_message, results_df
|
252 |
|
|
|
253 |
# --- Build Gradio Interface using Blocks ---
|
254 |
with gr.Blocks() as demo:
|
255 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
@@ -261,15 +164,19 @@ with gr.Blocks() as demo:
|
|
261 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
262 |
---
|
263 |
**Disclaimers:**
|
264 |
-
|
|
|
265 |
"""
|
266 |
)
|
267 |
-
|
268 |
gr.LoginButton()
|
|
|
269 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
|
270 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
271 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
272 |
-
|
273 |
run_button.click(
|
274 |
fn=run_and_submit_all,
|
275 |
outputs=[status_output, results_table]
|
@@ -277,24 +184,24 @@ with gr.Blocks() as demo:
|
|
277 |
|
278 |
if __name__ == "__main__":
|
279 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
280 |
-
|
281 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
282 |
space_host_startup = os.getenv("SPACE_HOST")
|
283 |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
284 |
-
|
285 |
if space_host_startup:
|
286 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
287 |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
288 |
else:
|
289 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
290 |
-
|
291 |
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
292 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
293 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
294 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
295 |
else:
|
296 |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
297 |
-
|
298 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
|
|
299 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
300 |
-
demo.launch(debug=True, share=
|
|
|
1 |
+
""" Basic Agent Evaluation Runner"""
|
2 |
import os
|
3 |
+
import inspect
|
4 |
import gradio as gr
|
5 |
import requests
|
6 |
import pandas as pd
|
7 |
+
from langchain_core.messages import HumanMessage
|
8 |
+
from agent import build_graph
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
11 |
|
12 |
+
# (Keep Constants as is)
|
13 |
+
# --- Constants ---
|
14 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
|
|
|
15 |
|
16 |
+
# --- Basic Agent Definition ---
|
17 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
class BasicAgent:
|
21 |
+
"""A langgraph agent."""
|
22 |
def __init__(self):
|
23 |
+
print("BasicAgent initialized.")
|
24 |
+
self.graph = build_graph()
|
25 |
+
|
26 |
def __call__(self, question: str) -> str:
|
27 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
28 |
+
# Wrap the question in a HumanMessage from langchain_core
|
29 |
+
messages = [HumanMessage(content=question)]
|
30 |
+
messages = self.graph.invoke({"messages": messages})
|
31 |
+
answer = messages['messages'][-1].content
|
32 |
+
return answer[14:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
|
35 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
36 |
"""
|
37 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
38 |
and displays the results.
|
39 |
"""
|
40 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
41 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
42 |
+
|
43 |
if profile:
|
44 |
+
username= f"{profile.username}"
|
45 |
print(f"User logged in: {username}")
|
46 |
else:
|
47 |
print("User not logged in.")
|
|
|
51 |
questions_url = f"{api_url}/questions"
|
52 |
submit_url = f"{api_url}/submit"
|
53 |
|
54 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
55 |
try:
|
56 |
+
agent = BasicAgent()
|
57 |
except Exception as e:
|
58 |
print(f"Error instantiating agent: {e}")
|
59 |
return f"Error initializing agent: {e}", None
|
60 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
61 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
62 |
print(agent_code)
|
63 |
|
|
|
67 |
response = requests.get(questions_url, timeout=15)
|
68 |
response.raise_for_status()
|
69 |
questions_data = response.json()
|
|
|
70 |
if not questions_data:
|
71 |
+
print("Fetched questions list is empty.")
|
72 |
+
return "Fetched questions list is empty or invalid format.", None
|
|
|
73 |
print(f"Fetched {len(questions_data)} questions.")
|
74 |
except requests.exceptions.RequestException as e:
|
75 |
print(f"Error fetching questions: {e}")
|
76 |
return f"Error fetching questions: {e}", None
|
77 |
except requests.exceptions.JSONDecodeError as e:
|
78 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
79 |
+
print(f"Response text: {response.text[:500]}")
|
80 |
+
return f"Error decoding server response for questions: {e}", None
|
81 |
except Exception as e:
|
82 |
print(f"An unexpected error occurred fetching questions: {e}")
|
83 |
return f"An unexpected error occurred fetching questions: {e}", None
|
84 |
|
85 |
+
# 3. Run your Agent
|
86 |
results_log = []
|
87 |
answers_payload = []
|
88 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
89 |
+
for item in questions_data:
|
|
|
|
|
|
|
|
|
90 |
task_id = item.get("task_id")
|
91 |
question_text = item.get("question")
|
|
|
92 |
if not task_id or question_text is None:
|
93 |
print(f"Skipping item with missing task_id or question: {item}")
|
94 |
continue
|
|
|
|
|
|
|
95 |
try:
|
96 |
submitted_answer = agent(question_text)
|
97 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
98 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
|
|
99 |
except Exception as e:
|
100 |
+
print(f"Error running agent on task {task_id}: {e}")
|
101 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
|
|
|
|
102 |
|
103 |
if not answers_payload:
|
104 |
print("Agent did not produce any answers to submit.")
|
105 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
106 |
|
107 |
+
# 4. Prepare Submission
|
108 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
109 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
110 |
print(status_update)
|
|
|
115 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
116 |
response.raise_for_status()
|
117 |
result_data = response.json()
|
|
|
118 |
final_status = (
|
119 |
f"Submission Successful!\n"
|
120 |
f"User: {result_data.get('username')}\n"
|
|
|
125 |
print("Submission successful.")
|
126 |
results_df = pd.DataFrame(results_log)
|
127 |
return final_status, results_df
|
|
|
128 |
except requests.exceptions.HTTPError as e:
|
129 |
error_detail = f"Server responded with status {e.response.status_code}."
|
130 |
try:
|
|
|
132 |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
133 |
except requests.exceptions.JSONDecodeError:
|
134 |
error_detail += f" Response: {e.response.text[:500]}"
|
|
|
135 |
status_message = f"Submission Failed: {error_detail}"
|
136 |
print(status_message)
|
137 |
results_df = pd.DataFrame(results_log)
|
138 |
return status_message, results_df
|
|
|
139 |
except requests.exceptions.Timeout:
|
140 |
status_message = "Submission Failed: The request timed out."
|
141 |
print(status_message)
|
142 |
results_df = pd.DataFrame(results_log)
|
143 |
return status_message, results_df
|
|
|
144 |
except requests.exceptions.RequestException as e:
|
145 |
status_message = f"Submission Failed: Network error - {e}"
|
146 |
print(status_message)
|
147 |
results_df = pd.DataFrame(results_log)
|
148 |
return status_message, results_df
|
|
|
149 |
except Exception as e:
|
150 |
status_message = f"An unexpected error occurred during submission: {e}"
|
151 |
print(status_message)
|
152 |
results_df = pd.DataFrame(results_log)
|
153 |
return status_message, results_df
|
154 |
|
155 |
+
|
156 |
# --- Build Gradio Interface using Blocks ---
|
157 |
with gr.Blocks() as demo:
|
158 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
|
|
164 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
165 |
---
|
166 |
**Disclaimers:**
|
167 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
168 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
169 |
"""
|
170 |
)
|
171 |
+
|
172 |
gr.LoginButton()
|
173 |
+
|
174 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
175 |
+
|
176 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
177 |
+
# Removed max_rows=10 from DataFrame constructor
|
178 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
179 |
+
|
180 |
run_button.click(
|
181 |
fn=run_and_submit_all,
|
182 |
outputs=[status_output, results_table]
|
|
|
184 |
|
185 |
if __name__ == "__main__":
|
186 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
|
|
187 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
188 |
space_host_startup = os.getenv("SPACE_HOST")
|
189 |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
190 |
+
|
191 |
if space_host_startup:
|
192 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
193 |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
194 |
else:
|
195 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
196 |
+
|
197 |
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
198 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
199 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
200 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
201 |
else:
|
202 |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
203 |
+
|
204 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
205 |
+
|
206 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
207 |
+
demo.launch(debug=True, share=False)
|