isThisYouLLM commited on
Commit
0883338
·
verified ·
1 Parent(s): 643e598

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -48
app.py CHANGED
@@ -105,70 +105,38 @@ def adapt_model(model:object, dim:int=1024) -> object:
105
 
106
 
107
  def main():
108
- parser = argparse.ArgumentParser()
109
- parser.add_argument('--model_name', type=str, default="Salesforce/codet5p-770m")
110
- parser.add_argument('--path_checkpoint1', type=str, default="checkpoint.bin")
111
- parser.add_argument('--path_checkpoint2', type=str, default="multilingual_standard.bin")
112
- args = parser.parse_args()
113
 
114
 
115
- model_name = args.model_name
116
- checkpoint1 = args.path_checkpoint1
117
- checkpoint2 = args.path_checkpoint2
118
 
119
  DEVICE = "cpu"
120
 
121
-
122
-
123
 
124
  #load tokenizer
125
  tokenizer = load_tokenizer(model_name)
126
  print("tokenizer loaded!")
127
-
128
-
129
 
130
 
131
-
132
- #loading model and tokenizer for functional translation
133
  model = load_model(model_name)
134
-
135
- #adding classification head to the model
136
  model = adapt_model(model, dim=model.shared.embedding_dim)
137
 
138
 
139
 
140
-
141
-
142
-
143
- selected = option_menu(
144
- menu_title="Choose your model",
145
- options=["Multilingual_multiprovenance","Multilingual_standard" ],
146
- default_index=0,
147
- orientation="horizontal",
148
- )
149
-
150
- if selected=="Multilingual_standard":
151
- model.load_state_dict(torch.load(checkpoint2,map_location='cpu'))
152
- model = model.eval()
153
- st.title("Human-AI stylometer - Multilingual_standard")
154
- text = st.text_area("insert your code here")
155
- button = st.button("send")
156
- if button or text:
157
- input = tokenizer([text])
158
- out= model(torch.tensor(input.input_ids),torch.tensor(input.attention_mask))
159
- #st.json(out)
160
- st.write(out["my_class"])
161
- else:
162
- model.load_state_dict(torch.load(checkpoint1,map_location='cpu'))
163
- model = model.eval()
164
- st.title("Human-AI stylometer - Multilingual_multiprovenance")
165
- text = st.text_area("insert your code here")
166
- button = st.button("send")
167
- if button or text:
168
- input = tokenizer([text])
169
- out= model(torch.tensor(input.input_ids),torch.tensor(input.attention_mask))
170
- #st.json(out)
171
- st.write(out["my_class"])
172
 
173
 
174
 
 
105
 
106
 
107
  def main():
108
+ print("----starting enviroment----")
 
 
 
 
109
 
110
 
111
+ model_name = "Salesforce/codet5p-770m"
112
+ checkpoint = "checkpoint.bin"
113
+
114
 
115
  DEVICE = "cpu"
116
 
117
+
 
118
 
119
  #load tokenizer
120
  tokenizer = load_tokenizer(model_name)
121
  print("tokenizer loaded!")
 
 
122
 
123
 
124
+ #loading model and tokenizer for functional translation
 
125
  model = load_model(model_name)
126
+ #adding classification head to the model
 
127
  model = adapt_model(model, dim=model.shared.embedding_dim)
128
 
129
 
130
 
131
+ model.load_state_dict(torch.load(checkpoint,map_location='cpu'))
132
+ model = model.eval()
133
+ st.title("Human-AI stylometer - Multilingual_multiprovenance")
134
+ text = st.text_area("insert your code here")
135
+ button = st.button("send")
136
+ if button or text:
137
+ input = tokenizer([text])
138
+ out= model(torch.tensor(input.input_ids),torch.tensor(input.attention_mask))
139
+ st.write(out["my_class"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
 
141
 
142