isThisYouLLM commited on
Commit
643e598
·
verified ·
1 Parent(s): 1774d37

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -23
app.py CHANGED
@@ -104,55 +104,74 @@ def adapt_model(model:object, dim:int=1024) -> object:
104
 
105
 
106
 
 
 
 
 
 
 
107
 
108
 
 
 
 
109
 
110
- model_name = "Salesforce/codet5p-770m"
111
- checkpoint = "checkpoint.bin"
112
-
113
- DEVICE = "cpu"
114
 
115
 
116
 
117
 
118
- #load tokenizer
119
- tokenizer = load_tokenizer(model_name)
120
- print("tokenizer loaded!")
121
 
122
 
123
 
124
 
125
 
126
  #loading model and tokenizer for functional translation
127
- model = load_model(model_name)
128
 
129
  #adding classification head to the model
130
- model = adapt_model(model, dim=model.shared.embedding_dim)
131
 
132
 
133
 
134
 
135
 
136
 
137
- selected = option_menu(
138
  menu_title="Choose your model",
139
- options=["Multilingual_multiprovenance"],
140
  default_index=0,
141
  orientation="horizontal",
142
  )
143
 
144
- if selected=="Multilingual_standard":
145
- model.load_state_dict(torch.load(checkpoint,map_location='cpu'))
146
- model = model.eval()
147
- st.title("Human-AI stylometer - Multilingual_standard")
148
- text = st.text_area("insert your code here")
149
- button = st.button("send")
150
- if button or text:
151
- input = tokenizer([text])
152
- out= model(torch.tensor(input.input_ids),torch.tensor(input.attention_mask))
153
- #st.json(out)
154
- st.write(out["my_class"])
155
-
 
 
 
 
 
 
 
 
 
 
156
 
157
 
158
 
 
 
 
 
104
 
105
 
106
 
107
+ def main():
108
+ parser = argparse.ArgumentParser()
109
+ parser.add_argument('--model_name', type=str, default="Salesforce/codet5p-770m")
110
+ parser.add_argument('--path_checkpoint1', type=str, default="checkpoint.bin")
111
+ parser.add_argument('--path_checkpoint2', type=str, default="multilingual_standard.bin")
112
+ args = parser.parse_args()
113
 
114
 
115
+ model_name = args.model_name
116
+ checkpoint1 = args.path_checkpoint1
117
+ checkpoint2 = args.path_checkpoint2
118
 
119
+ DEVICE = "cpu"
 
 
 
120
 
121
 
122
 
123
 
124
+ #load tokenizer
125
+ tokenizer = load_tokenizer(model_name)
126
+ print("tokenizer loaded!")
127
 
128
 
129
 
130
 
131
 
132
  #loading model and tokenizer for functional translation
133
+ model = load_model(model_name)
134
 
135
  #adding classification head to the model
136
+ model = adapt_model(model, dim=model.shared.embedding_dim)
137
 
138
 
139
 
140
 
141
 
142
 
143
+ selected = option_menu(
144
  menu_title="Choose your model",
145
+ options=["Multilingual_multiprovenance","Multilingual_standard" ],
146
  default_index=0,
147
  orientation="horizontal",
148
  )
149
 
150
+ if selected=="Multilingual_standard":
151
+ model.load_state_dict(torch.load(checkpoint2,map_location='cpu'))
152
+ model = model.eval()
153
+ st.title("Human-AI stylometer - Multilingual_standard")
154
+ text = st.text_area("insert your code here")
155
+ button = st.button("send")
156
+ if button or text:
157
+ input = tokenizer([text])
158
+ out= model(torch.tensor(input.input_ids),torch.tensor(input.attention_mask))
159
+ #st.json(out)
160
+ st.write(out["my_class"])
161
+ else:
162
+ model.load_state_dict(torch.load(checkpoint1,map_location='cpu'))
163
+ model = model.eval()
164
+ st.title("Human-AI stylometer - Multilingual_multiprovenance")
165
+ text = st.text_area("insert your code here")
166
+ button = st.button("send")
167
+ if button or text:
168
+ input = tokenizer([text])
169
+ out= model(torch.tensor(input.input_ids),torch.tensor(input.attention_mask))
170
+ #st.json(out)
171
+ st.write(out["my_class"])
172
 
173
 
174
 
175
+
176
+ if __name__ == '__main__':
177
+ main()