Spaces:
Sleeping
Sleeping
File size: 48,929 Bytes
8149dc4 3b52a72 ed2d077 65c88f3 f683f98 4c45acd ea9a277 c9c1343 040fb51 fd6236c 8149dc4 88c9820 acceb2a ea9a277 d6af388 ea9a277 ed2d077 fb691f0 ea9a277 ed2d077 3b52a72 ed2d077 b6b10a1 ed2d077 3b52a72 ea9a277 d6af388 1d21087 8149dc4 88c9820 8149dc4 2fbb9b4 76578a8 2fbb9b4 76578a8 2fbb9b4 76578a8 2fbb9b4 76578a8 2fbb9b4 76578a8 2fbb9b4 76578a8 2fbb9b4 76578a8 2fbb9b4 76578a8 2fbb9b4 76578a8 2fbb9b4 76578a8 2fbb9b4 9e1a1a7 2fbb9b4 76578a8 2fbb9b4 76578a8 2fbb9b4 76578a8 8149dc4 3b52a72 8149dc4 76578a8 ea9a277 88c9820 3b52a72 fb691f0 22919c2 ea9a277 88c9820 ea9a277 22919c2 88c9820 f091e7c 040fb51 88c9820 f091e7c 4a8daec 040fb51 f091e7c 040fb51 f091e7c 88c9820 4a8daec c8770eb ea9a277 c8770eb 040fb51 22919c2 ea9a277 22919c2 88c9820 fb691f0 88c9820 65c88f3 88c9820 fb691f0 88c9820 65c88f3 88c9820 fb691f0 88c9820 fb691f0 88c9820 22919c2 88c9820 22919c2 88c9820 22919c2 88c9820 22919c2 88c9820 22919c2 88c9820 fb691f0 88c9820 211f12c 88c9820 211f12c 88c9820 5f09703 ea9a277 5f09703 88c9820 5f09703 ea9a277 5f09703 ea9a277 88c9820 8149dc4 88c9820 2df06f5 f7df3ac 8149dc4 88c9820 f7df3ac 8149dc4 aaae23b f7df3ac aaae23b 8149dc4 03c4a10 8149dc4 13baacd 0fdadfb 8dabad2 0fdadfb 03c4a10 0fdadfb e91ba59 0fdadfb 03c4a10 0fdadfb 8149dc4 88c9820 8149dc4 88c9820 76578a8 88c9820 8149dc4 88c9820 22be697 76578a8 88c9820 8149dc4 88c9820 76578a8 88c9820 8149dc4 76578a8 8149dc4 ea9a277 76578a8 8149dc4 13baacd 8149dc4 03c4a10 8149dc4 03c4a10 8149dc4 03c4a10 8149dc4 03c4a10 8149dc4 88c9820 8dabad2 88c9820 8dabad2 88c9820 da73095 88c9820 da73095 88c9820 da73095 fd6236c da73095 fd6236c da73095 fd6236c da73095 88c9820 fd6236c da73095 fd6236c 88c9820 fd6236c da73095 fd6236c da73095 fd6236c da73095 e91ba59 ea9a277 e91ba59 a85915f e91ba59 ea9a277 e91ba59 8149dc4 da73095 ea9a277 da73095 e39cdca da73095 8149dc4 0ca0927 8149dc4 0ca0927 5e55543 8149dc4 e39cdca 8149dc4 da73095 0ca0927 88c9820 da73095 fd6236c da73095 fd6236c 76578a8 da73095 76578a8 da73095 fd6236c 88c9820 fd6236c da73095 fd6236c da73095 fd6236c da73095 88c9820 da73095 fd6236c 88c9820 fd6236c da73095 c5f118a f7df3ac fb691f0 78a0ab9 00f1e0c fb691f0 00f1e0c fb691f0 bf12c17 fb691f0 c5f118a fb691f0 22919c2 00f1e0c 22919c2 fb691f0 da73095 fb691f0 88c9820 acceb2a da73095 88c9820 da73095 fd6236c da73095 fd6236c da73095 88c9820 da73095 88c9820 da73095 88c9820 da73095 fd6236c da73095 88c9820 8149dc4 5d0ff5c e303dba 76578a8 5d0ff5c 3620b6d 5d0ff5c 3620b6d 5d0ff5c d8a6b5e f8a1dbd 5d0ff5c 3620b6d 5d0ff5c 8dabad2 5d0ff5c 3620b6d 5d0ff5c 8dabad2 c3f9a52 8dabad2 5d0ff5c 3620b6d 5d0ff5c 3620b6d 5d0ff5c 3620b6d 5d0ff5c 3620b6d 5d0ff5c 3620b6d 5d0ff5c 3620b6d 5d0ff5c 3620b6d 8149dc4 0fdadfb 03c4a10 8149dc4 03c4a10 8149dc4 03c4a10 8149dc4 211f12c 8149dc4 d78e376 aaae23b f7df3ac aaae23b 8149dc4 03c4a10 aaae23b fe34f00 03c4a10 8149dc4 03c4a10 0fdadfb 03c4a10 8149dc4 03c4a10 8149dc4 e39cdca 0ca0927 8149dc4 03c4a10 8149dc4 ea9a277 bc0deaa 8149dc4 d78e376 2d868e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 |
import gradio as gr
import os
import json
import pandas as pd
import random
import shutil
import time
import collections
from functools import wraps
from filelock import FileLock
from datasets import load_dataset, Audio
from huggingface_hub import HfApi, hf_hub_download
from multiprocessing import TimeoutError
from concurrent.futures import ThreadPoolExecutor, TimeoutError as FutureTimeoutError
# Load dataset from HuggingFace
dataset = load_dataset("intersteller2887/Turing-test-dataset-en", split="train")
dataset = dataset.cast_column("audio", Audio(decode=False)) # Prevent calling 'torchcodec' from newer version of 'datasets'
# Huggingface space working directory: "/home/user/app"
target_audio_dir = "/home/user/app/audio"
os.makedirs(target_audio_dir, exist_ok=True)
COUNT_JSON_PATH = "/home/user/app/count.json"
COUNT_JSON_REPO_PATH = "submissions/count.json" # Output directory (Huggingface dataset directory)
# Copy recordings to the working directory
local_audio_paths = []
for item in dataset:
src_path = item["audio"]["path"]
if src_path and os.path.exists(src_path):
filename = os.path.basename(src_path)
dst_path = os.path.join(target_audio_dir, filename)
if not os.path.exists(dst_path):
shutil.copy(src_path, dst_path)
local_audio_paths.append(dst_path)
all_data_audio_paths = local_audio_paths
# Take first file of the datasets as sample
sample1_audio_path = local_audio_paths[0]
print(sample1_audio_path)
# ==============================================================================
# Data Definition
# ==============================================================================
DIMENSIONS_DATA = [
{
"title": "Semantic and Pragmatic Features",
"audio": "sample1_audio_path",
"sub_dims": [
"Memory Consistency: Human memory in short contexts is usually consistent and self-correcting (e.g., by asking questions); machines may show inconsistent context memory and fail to notice or correct errors (e.g., forgetting key information and persisting in wrong answers).",
"Logical Coherence: Human logic is naturally coherent and allows reasonable leaps; machine logic is abrupt or self-contradictory (e.g., sudden topic shifts without transitions).",
"Pronunciation Accuracy: Human-like: Correct and natural pronunciation of words, including context-appropriate usage of common English heteronyms; Machine-like: Unnatural pronunciation errors, especially mispronunciation of common heteronyms",
"Code-switching: Humans mix multiple languages fluently and contextually; machines mix languages rigidly, lacking logical language switching.",
"Linguistic Vagueness: Human speech tends to include vague expressions (e.g., “more or less,” “I guess”) and self-corrections; machine responses are typically precise and assertive.",
"Filler Word Usage: Human filler words (e.g., 'uh', 'like') appear randomly and show signs of thinking; machine fillers are either repetitive and patterned or completely absent.",
"Metaphor and Pragmatic Intent: Humans use metaphors, irony, and euphemisms to express layered meanings; machines interpret literally or use rhetorical devices awkwardly, lacking semantic richness."
],
"reference_scores": [5, 5, 3, 3, 5, 5, 3]
},
{
"title": "Non-Physiological Paralinguistic Features",
"audio": "sample1_audio_path",
"sub_dims": [
"Rhythm: Human speech rate varies with meaning, occasionally hesitating or pausing; machine rhythm is uniform, with little or mechanical pauses.",
"Intonation: Humans naturally raise or lower pitch to express questions, surprise, or emphasis; machine intonation is monotonous or overly patterned, mismatching the context.",
"Emphasis: Humans consciously stress key words to highlight important information; machines have uniform word emphasis or stress incorrect parts.",
"Auxiliary Vocalizations: Humans produce context-appropriate non-verbal sounds (e.g., laughter, sighs); machine non-verbal sounds are contextually incorrect, mechanical, or absent."
],
"reference_scores": [4, 5, 4, 3]
},
{
"title": "Physiological Paralinguistic Features",
"audio": "sample1_audio_path",
"sub_dims": [
"Micro-physiological Noise: Human speech includes unconscious physiological sounds like breathing, saliva, or bubbling, naturally woven into rhythm; machine speech is overly clean or adds unnatural noises.",
"Pronunciation Instability: Human pronunciation includes irregularities (e.g., linking, tremors, slurring, nasal sounds); machine pronunciation is overly standard and uniform, lacking personality.",
"Accent: Humans naturally exhibit regional accents or speech traits; machine accents sound forced or unnatural."
],
"reference_scores": [3, 3, 4]
},
{
"title": "Mechanical Persona",
"audio": "sample1_audio_path",
"sub_dims": [
"Sycophancy: Humans assess context to agree or disagree, sometimes offering differing opinions; machines excessively agree, thank, or apologize, over-validating the other party and lacking authentic interaction.",
"Formal Expression: Human speech is flexible; machine responses are formally structured, overly written, and use vague wording."
],
"reference_scores": [5, 5]
},
{
"title": "Emotional Expression",
"audio": "sample1_audio_path",
"sub_dims": [
"Semantic Level: Humans show appropriate emotional responses to contexts like sadness or joy; machines are emotionally flat, or use emotional words vaguely and out of context.",
"Acoustic Level: Human pitch, volume, and rhythm change dynamically with emotion; machine emotional tone is formulaic or mismatched with the context."
],
"reference_scores": [3, 3]
}
]
DIMENSION_TITLES = [d["title"] for d in DIMENSIONS_DATA]
SPECIAL_KEYWORDS = ["Code-switching", "Metaphor and Pragmatic Intent", "Auxiliary Vocalizations", "Accent"]
MAX_SUB_DIMS = max(len(d['sub_dims']) for d in DIMENSIONS_DATA)
THE_SUB_DIMS = [d['sub_dims'] for d in DIMENSIONS_DATA]
# ==============================================================================
# Backend Function Definitions
# ==============================================================================
# This version did not place file reading into filelock, concurrent read could happen
"""def load_or_initialize_count_json(audio_paths):
try:
# Only try downloading if file doesn't exist yet
if not os.path.exists(COUNT_JSON_PATH):
downloaded_path = hf_hub_download(
repo_id="intersteller2887/Turing-test-dataset",
repo_type="dataset",
filename=COUNT_JSON_REPO_PATH,
token=os.getenv("HF_TOKEN")
)
# Save it as COUNT_JSON_PATH so that the lock logic remains untouched
with open(downloaded_path, "rb") as src, open(COUNT_JSON_PATH, "wb") as dst:
dst.write(src.read())
except Exception as e:
print(f"Could not download count.json from HuggingFace dataset: {e}")
# Add filelock to /workspace/count.json
lock_path = COUNT_JSON_PATH + ".lock"
# Read of count.json will wait for 10 seconds until another thread involving releases it, and then add a lock to it
with FileLock(lock_path, timeout=10):
# If count.json exists: load into count_data
# Else initialize count_data with orderedDict
if os.path.exists(COUNT_JSON_PATH):
with open(COUNT_JSON_PATH, "r", encoding="utf-8") as f:
count_data = json.load(f, object_pairs_hook=collections.OrderedDict)
else:
count_data = collections.OrderedDict()
updated = False
sample_audio_files = {os.path.basename(d["audio"]) for d in DIMENSIONS_DATA}
# Guarantee that the sample recording won't be take into the pool
# Update newly updated recordings into count.json
for path in audio_paths:
filename = os.path.basename(path)
if filename not in count_data:
if filename in sample_audio_files:
count_data[filename] = 999
else:
count_data[filename] = 0
updated = True
if updated or not os.path.exists(COUNT_JSON_PATH):
with open(COUNT_JSON_PATH, "w", encoding="utf-8") as f:
json.dump(count_data, f, indent=4, ensure_ascii=False)
return count_data"""
# Function that load or initialize count.json
# Function is called when user start a challenge, and this will load or initialize count.json to working directory
# Initialize happens when count.json does not exist in the working directory as well as HuggingFace dataset
# Load happens when count.json exists in HuggingFace dataset, and it's not loaded to the working directory yet
# After load/initialize, all newly added audio files will be added to count.json with initial value of 0
# Load/Initialize will generate count.json in the working directory for all users under this space
# This version also places file reading into filelock, and modified
def load_or_initialize_count_json(audio_paths):
# Add filelock to /workspace/count.json
lock_path = COUNT_JSON_PATH + ".lock"
with FileLock(lock_path, timeout=10):
# If count.json does not exist in the working directory, try to download it from HuggingFace dataset
if not os.path.exists(COUNT_JSON_PATH):
try:
# Save latest count.json to working directory
downloaded_path = hf_hub_download(
repo_id="intersteller2887/Turing-test-dataset-en",
repo_type="dataset",
filename=COUNT_JSON_REPO_PATH,
token=os.getenv("HF_TOKEN")
)
with open(downloaded_path, "rb") as src, open(COUNT_JSON_PATH, "wb") as dst:
dst.write(src.read())
except Exception:
pass
# If count.json exists in the working directory: load into count_data for potential update
if os.path.exists(COUNT_JSON_PATH):
with open(COUNT_JSON_PATH, "r", encoding="utf-8") as f:
count_data = json.load(f, object_pairs_hook=collections.OrderedDict)
# Else initialize count_data with orderedDict
# This happens when there is no count.json (both working directory and HuggingFace dataset)
else:
count_data = collections.OrderedDict()
updated = False
sample_audio_files = {os.path.basename(d["audio"]) for d in DIMENSIONS_DATA}
# Guarantee that the sample recording won't be take into the pool
# Update newly updated recordings into count.json
for path in audio_paths:
filename = os.path.basename(path)
if filename not in count_data:
if filename in sample_audio_files:
count_data[filename] = 999
else:
count_data[filename] = 0
updated = True
# Write updated count_data to /home/user/app/count.json
if updated or not os.path.exists(COUNT_JSON_PATH):
with open(COUNT_JSON_PATH, "w", encoding="utf-8") as f:
json.dump(count_data, f, indent=4, ensure_ascii=False)
return
# Shorten the time of playing previous audio when reached next question
def append_cache_buster(audio_path):
return f"{audio_path}?t={int(time.time() * 1000)}"
# Function that samples questions from avaliable question set
# This version utilizes a given count_data to sample audio paths
"""def sample_audio_paths(audio_paths, count_data, k=5, max_count=1): # k for questions per test; max_count for question limit in total
eligible_paths = [p for p in audio_paths if count_data.get(os.path.basename(p), 0) < max_count]
if len(eligible_paths) < k:
raise ValueError(f"可用音频数量不足(只剩 {len(eligible_paths)} 条 count<{max_count} 的音频),无法抽取 {k} 条")
# Shuffule to avoid fixed selections resulted from directory structure
selected = random.sample(eligible_paths, k)
# Once sampled a test, update these questions immediately
for path in selected:
filename = os.path.basename(path)
count_data[filename] = count_data.get(filename, 0) + 1
# Add filelock to /workspace/count.json
lock_path = COUNT_JSON_PATH + ".lock"
with FileLock(lock_path, timeout=10):
with open(COUNT_JSON_PATH, "w", encoding="utf-8") as f:
json.dump(count_data, f, indent=4, ensure_ascii=False)
return selected, count_data"""
# This version places file reading into filelock to guarantee correct update of count.json
def sample_audio_paths(audio_paths, k=5, max_count=1):
# Add filelock to /workspace/count.json
lock_path = COUNT_JSON_PATH + ".lock"
# Load newest count.json
with FileLock(lock_path, timeout=10):
with open(COUNT_JSON_PATH, "r", encoding="utf-8") as f:
count_data = json.load(f)
eligible_paths = [
p for p in audio_paths
if count_data.get(os.path.basename(p), 0) < max_count
]
if len(eligible_paths) < k:
raise ValueError(f"可用音频数量不足(只剩 {len(eligible_paths)} 条 count<{max_count} 的音频),无法抽取 {k} 条")
selected = random.sample(eligible_paths, k)
# Update count_data
for path in selected:
filename = os.path.basename(path)
count_data[filename] = count_data.get(filename, 0) + 1
# Update count.json
with open(COUNT_JSON_PATH, "w", encoding="utf-8") as f:
json.dump(count_data, f, indent=4, ensure_ascii=False)
# return selected, count_data
# Keep count_data atomic
return selected
# ==============================================================================
# Frontend Function Definitions
# ==============================================================================
# Save question_set in each user_data_state, preventing global sharing
def start_challenge(user_data_state):
load_or_initialize_count_json(all_data_audio_paths)
# selected_audio_paths, updated_count_data = sample_audio_paths(all_data_audio_paths, k=5)
# Keep count_data atomic
selected_audio_paths = sample_audio_paths(all_data_audio_paths, k=5)
question_set = [
{"audio": path, "desc": f"这是音频文件 {os.path.basename(path)} 的描述"}
for path in selected_audio_paths
]
user_data_state["question_set"] = question_set
# count_data is not needed in the user data
# user_data_state["updated_count_data"] = updated_count_data
return gr.update(visible=False), gr.update(visible=True), user_data_state
# This function toggles the visibility of the "其他(请注明)" input field based on the selected education choice
def toggle_education_other(choice):
is_other = (choice == "其他(请注明)")
return gr.update(visible=is_other, interactive=is_other, value="")
# This function checks if the user information is complete
def check_info_complete(username, age, gender, education, education_other, ai_experience):
if username.strip() and age and gender and education and ai_experience:
if education == "其他(请注明)" and not education_other.strip():
return gr.update(interactive=False)
return gr.update(interactive=True)
return gr.update(interactive=False)
# This function updates user_data and initializes the sample page (called when user submits their info)
def show_sample_page_and_init(username, age, gender, education, education_other, ai_experience, user_data):
final_edu = education_other if education == "其他(请注明)" else education
user_data.update({
"username": username.strip(),
"age": age,
"gender": gender,
"education": final_edu,
"ai_experience": ai_experience
})
first_dim_title = DIMENSION_TITLES[0]
initial_updates = update_sample_view(first_dim_title)
return [
gr.update(visible=False), gr.update(visible=True), user_data, first_dim_title
] + initial_updates
def update_sample_view(dimension_title):
dim_data = next((d for d in DIMENSIONS_DATA if d["title"] == dimension_title), None)
if dim_data:
audio_up = gr.update(value=dim_data["audio"])
# audio_up = gr.update(value=append_cache_buster(dim_data["audio"]))
interactive_view_up = gr.update(visible=True)
reference_view_up = gr.update(visible=False)
reference_btn_up = gr.update(value="Reference")
sample_slider_ups = []
ref_slider_ups = []
scores = dim_data.get("reference_scores", [])
for i in range(MAX_SUB_DIMS):
if i < len(dim_data['sub_dims']):
label = dim_data['sub_dims'][i]
score = scores[i] if i < len(scores) else 0
sample_slider_ups.append(gr.update(visible=True, label=label, value=0))
ref_slider_ups.append(gr.update(visible=True, label=label, value=score))
else:
sample_slider_ups.append(gr.update(visible=False, value=0))
ref_slider_ups.append(gr.update(visible=False, value=0))
return [audio_up, interactive_view_up, reference_view_up, reference_btn_up] + sample_slider_ups + ref_slider_ups
empty_updates = [gr.update()] * 4
slider_empty_updates = [gr.update()] * (MAX_SUB_DIMS * 2)
return empty_updates + slider_empty_updates
def update_test_dimension_view(d_idx, selections):
# dimension = DIMENSIONS_DATA[d_idx]
slider_updates = []
dim_data = DIMENSIONS_DATA[d_idx]
sub_dims = dim_data["sub_dims"]
dim_title = dim_data["title"]
existing_scores = selections.get(dim_data['title'], {})
progress_d = f"Dimension {d_idx + 1} / {len(DIMENSIONS_DATA)}: **{dim_data['title']}**"
for i in range(MAX_SUB_DIMS):
if i < len(sub_dims):
desc = sub_dims[i]
# print(f"{desc} -> default value: {existing_scores.get(desc, 0)}")
name = desc.split(":")[0].strip()
default_value = 0 if name in SPECIAL_KEYWORDS else 1
value = existing_scores.get(desc, default_value)
slider_updates.append(gr.update(
visible=True,
label=desc,
minimum=default_value,
maximum=5,
step=1,
value=value,
interactive=True,
))
# slider_updates.append(gr.update(
# visible=True,
# label=desc,
# minimum=0 if name in SPECIAL_KEYWORDS else 1,
# maximum=5,
# value = existing_scores.get(desc, 0),
# interactive=True,
# ))
else:
slider_updates.append(gr.update(visible=False))
# print(f"{desc} -> default value: {existing_scores.get(desc, 0)}")
# for i in range(MAX_SUB_DIMS):
# if i < len(dimension['sub_dims']):
# sub_dim_label = dimension['sub_dims'][i]
# value = existing_scores.get(sub_dim_label, 0)
# slider_updates.append(gr.update(visible=True, label=sub_dim_label, value=value))
# else:
# slider_updates.append(gr.update(visible=False, value=0))
prev_btn_update = gr.update(interactive=(d_idx > 0))
next_btn_update = gr.update(
value="Proceed to Final Judgement" if d_idx == len(DIMENSIONS_DATA) - 1 else "Next Dimension",
interactive=True
)
return [gr.update(value=progress_d), prev_btn_update, next_btn_update] + slider_updates
def init_test_question(user_data, q_idx):
d_idx = 0
question = user_data["question_set"][q_idx]
progress_q = f"Question {q_idx + 1} / {len(user_data['question_set'])}"
initial_updates = update_test_dimension_view(d_idx, {})
dim_title_update, prev_btn_update, next_btn_update = initial_updates[:3]
slider_updates = initial_updates[3:]
return (
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
q_idx, d_idx, {},
gr.update(value=progress_q),
dim_title_update,
gr.update(value=question['audio']),
# gr.update(value=append_cache_buster(question['audio'])),
prev_btn_update,
next_btn_update,
gr.update(value=None), # BUG FIX: Changed from "" to None to correctly clear the radio button
gr.update(interactive=False),
) + tuple(slider_updates)
def navigate_dimensions(direction, q_idx, d_idx, selections, *slider_values):
current_dim_data = DIMENSIONS_DATA[d_idx]
current_sub_dims = current_dim_data['sub_dims']
scores = {sub_dim: slider_values[i] for i, sub_dim in enumerate(current_sub_dims)}
selections[current_dim_data['title']] = scores
new_d_idx = d_idx + (1 if direction == "next" else -1)
if direction == "next" and d_idx == len(DIMENSIONS_DATA) - 1:
return (
gr.update(visible=False),
gr.update(visible=True),
q_idx, new_d_idx, selections,
gr.update(),
gr.update(),
gr.update(),
gr.update(interactive=True),
gr.update(interactive=False),
gr.update(interactive=False),
gr.update(interactive=False),
) + (gr.update(),) * MAX_SUB_DIMS
else:
view_updates = update_test_dimension_view(new_d_idx, selections)
dim_title_update, prev_btn_update, next_btn_update = view_updates[:3]
slider_updates = view_updates[3:]
return (
gr.update(), gr.update(),
q_idx, new_d_idx, selections,
gr.update(),
dim_title_update,
gr.update(),
gr.update(),
gr.update(),
prev_btn_update,
next_btn_update,
) + tuple(slider_updates)
def toggle_reference_view(current):
if current == "Reference":
return gr.update(visible=False), gr.update(visible=True), gr.update(value="Back")
else:
return gr.update(visible=True), gr.update(visible=False), gr.update(value="Reference")
def back_to_welcome():
return (
gr.update(visible=True), # welcome_page
gr.update(visible=False), # info_page
gr.update(visible=False), # sample_page
gr.update(visible=False), # pretest_page
gr.update(visible=False), # test_page
gr.update(visible=False), # final_judgment_page
gr.update(visible=False), # result_page
{}, # user_data_state
0, # current_question_index
0, # current_test_dimension_index
{}, # current_question_selections
[] # test_results
)
# ==============================================================================
# Retry Function Definitions
# ==============================================================================
# Decorator function that allows to use ThreadPoolExecutor to retry a function with timeout
def retry_with_timeout(max_retries=3, timeout=10, backoff=1):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
last_exception = None
for attempt in range(max_retries):
try:
with ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(func, *args, **kwargs)
try:
result = future.result(timeout=timeout)
return result
except FutureTimeoutError:
future.cancel()
raise TimeoutError(f"Operation timed out after {timeout} seconds")
except Exception as e:
last_exception = e
print(f"Attempt {attempt + 1} failed: {str(e)}")
if attempt < max_retries - 1:
time.sleep(backoff * (attempt + 1))
print(f"All {max_retries} attempts failed")
if last_exception:
raise last_exception
raise Exception("Unknown error occurred")
return wrapper
return decorator
def save_with_retry(all_results, user_data):
# 尝试上传到Hugging Face Hub
try:
# 使用线程安全的保存方式
with ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(save_all_results_to_file, all_results, user_data)
try:
future.result(timeout=30) # 设置30秒超时
return True
except FutureTimeoutError:
future.cancel()
print("上传超时")
return False
except Exception as e:
print(f"上传到Hub失败: {e}")
return False
def save_locally_with_retry(data, filename, max_retries=3):
for attempt in range(max_retries):
try:
with open(filename, 'w', encoding='utf-8') as f:
json.dump(data, f, indent=4, ensure_ascii=False)
return True
except Exception as e:
print(f"本地保存尝试 {attempt + 1} 失败: {e}")
if attempt < max_retries - 1:
time.sleep(1)
return False
def update_count_with_retry(count_data, question_set, max_retries=3):
for attempt in range(max_retries):
try:
lock_path = COUNT_JSON_PATH + ".lock"
with FileLock(lock_path, timeout=10):
# Remove unfinished question(s) from count.json
for question in question_set:
filename = os.path.basename(question['audio'])
if filename in count_data and count_data[filename] < 1:
count_data[filename] = 0 # Mark unfinished data as 0
with open(COUNT_JSON_PATH, 'w', encoding='utf-8') as f:
json.dump(count_data, f, indent=4, ensure_ascii=False)
return True
except Exception as e:
print(f"Fail to update count.json {e} for {attempt + 1} time")
if attempt < max_retries - 1:
time.sleep(1)
return False
# ==============================================================================
# Previous version of submit_question_and_advance
"""def submit_question_and_advance(q_idx, d_idx, selections, final_choice, all_results, user_data):
# selections["final_choice"] = final_choice
cleaned_selections = {}
for dim_title, sub_scores in selections.items():
# if dim_title == "final_choice": # 去掉if判断
cleaned_selections["final_choice"] = final_choice
# continue
cleaned_sub_scores = {}
for sub_dim, score in sub_scores.items():
cleaned_sub_scores[sub_dim] = None if score == 0 else score
cleaned_selections[dim_title] = cleaned_sub_scores
final_question_result = {
"question_id": q_idx,
"audio_file": user_data["question_set"][q_idx]['audio'],
"selections": cleaned_selections
}
all_results.append(final_question_result)
q_idx += 1
# If q_idx hasn't reached the last one
if q_idx < len(user_data["question_set"]):
init_q_updates = init_test_question(user_data, q_idx) # Case 1: jam happens when initialize next question
return init_q_updates + (all_results, gr.update(value=""))
# If q_idx has reached the last one
else:
result_str = "### 测试全部完成!\n\n你的提交结果概览:\n"
for res in all_results:
# result_str += f"\n#### 题目: {res['audio_file']}\n"
result_str += f"##### 最终判断: **{res['selections'].get('final_choice', '未选择')}**\n"
for dim_title, dim_data in res['selections'].items():
if dim_title == 'final_choice': continue
result_str += f"- **{dim_title}**:\n"
for sub_dim, score in dim_data.items():
result_str += f" - *{sub_dim[:20]}...*: {score}/5\n"
# save_all_results_to_file(all_results, user_data)
# save_all_results_to_file(all_results, user_data, count_data=updated_count_data)
save_all_results_to_file(all_results, user_data, count_data=user_data.get("updated_count_data"))
return (
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True),
q_idx, d_idx, {},
gr.update(), gr.update(), gr.update(), gr.update(), gr.update(),
gr.update(), gr.update(),
) + (gr.update(),) * MAX_SUB_DIMS + (all_results, result_str)"""
# user_data now no further contain "updated_count_data", which should be read/write with filelock and be directly accessed from working directory
def submit_question_and_advance(q_idx, d_idx, selections, final_choice, all_results, user_data):
try:
# 准备数据
cleaned_selections = {}
for dim_title, sub_scores in selections.items():
cleaned_selections["final_choice"] = final_choice
cleaned_sub_scores = {}
for sub_dim, score in sub_scores.items():
cleaned_sub_scores[sub_dim] = None if score == 0 else score
cleaned_selections[dim_title] = cleaned_sub_scores
final_question_result = {
"question_id": q_idx,
"audio_file": user_data["question_set"][q_idx]['audio'],
"selections": cleaned_selections
}
all_results.append(final_question_result)
q_idx += 1
if q_idx < len(user_data["question_set"]):
init_q_updates = init_test_question(user_data, q_idx)
return init_q_updates + (all_results, gr.update(value=""))
else:
# 准备完整结果数据
result_str = "### Test Completed!\n\nOverview of your submission:\n"
for res in all_results:
result_str += f"##### Final Judgement: **{res['selections'].get('final_choice', 'empty')}**\n" # empty == no choice
for dim_title, dim_data in res['selections'].items():
if dim_title == 'final_choice': continue
result_str += f"- **{dim_title}**:\n"
for sub_dim, score in dim_data.items():
result_str += f" - *{sub_dim[:20]}...*: {score}/5\n"
# 尝试上传(带重试)
try:
# success = save_with_retry(all_results, user_data, user_data.get("updated_count_data"))
success = save_with_retry(all_results, user_data)
except Exception as e:
print(f"上传过程中发生错误: {e}")
success = False
if not success:
# 上传失败,保存到本地
username = user_data.get("username", "anonymous")
timestamp = pd.Timestamp.now().strftime('%Y%m%d_%H%M%S')
local_filename = f"submission_{username}_{timestamp}.json"
# 准备数据包
user_info_clean = {
k: v for k, v in user_data.items() if k not in ["question_set"]
}
final_data_package = {
"user_info": user_info_clean,
"results": all_results
}
# 尝试保存到本地
local_success = save_locally_with_retry(final_data_package, local_filename)
if local_success:
result_str += f"\n\n⚠️ 上传失败,结果已保存到本地文件: {local_filename}"
else:
result_str += "\n\n❌ 上传失败且无法保存到本地文件,请联系管理员"
# 更新count.json(剔除未完成的题目)
try:
with FileLock(COUNT_JSON_PATH + ".lock", timeout=5):
with open(COUNT_JSON_PATH, "r", encoding="utf-8") as f:
count_data = json.load(f, object_pairs_hook=collections.OrderedDict)
count_update_success = update_count_with_retry(count_data, user_data["question_set"])
except Exception as e:
print(f"更新count.json失败: {e}")
count_update_success = False
if not count_update_success:
result_str += "\n\n⚠️ 无法更新题目计数,请联系管理员"
return (
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True),
q_idx, d_idx, {},
gr.update(), gr.update(), gr.update(), gr.update(), gr.update(),
gr.update(), gr.update(),
) + (gr.update(),) * MAX_SUB_DIMS + (all_results, result_str)
except Exception as e:
print(f"提交过程中发生错误: {e}")
# 返回错误信息
error_msg = f"提交过程中发生错误: {str(e)}"
return (
gr.update(), gr.update(), gr.update(), gr.update(),
q_idx, d_idx, selections,
gr.update(), gr.update(), gr.update(), gr.update(), gr.update(),
gr.update(), gr.update(),
) + (gr.update(),) * MAX_SUB_DIMS + (all_results, error_msg)
"""def save_all_results_to_file(all_results, user_data, count_data=None):
repo_id = "intersteller2887/Turing-test-dataset"
username = user_data.get("username", "user")
timestamp = pd.Timestamp.now().strftime('%Y%m%d_%H%M%S')
submission_filename = f"submissions_{username}_{timestamp}.json"
user_info_clean = {
k: v for k, v in user_data.items() if k not in ["question_set", "updated_count_data"]
}
final_data_package = {
"user_info": user_info_clean,
"results": all_results
}
json_string = json.dumps(final_data_package, ensure_ascii=False, indent=4)
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
print("HF_TOKEN not found. Cannot upload to the Hub.")
return
try:
api = HfApi()
# Upload submission file
api.upload_file(
path_or_fileobj=bytes(json_string, "utf-8"),
path_in_repo=f"submissions/{submission_filename}",
repo_id=repo_id,
repo_type="dataset",
token=hf_token,
commit_message=f"Add new submission from {username}"
)
print(f"上传成功: {submission_filename}")
if count_data:
with FileLock(COUNT_JSON_PATH + ".lock", timeout=10):
with open(COUNT_JSON_PATH, "w", encoding="utf-8") as f:
json.dump(count_data, f, indent=4, ensure_ascii=False)
api.upload_file(
path_or_fileobj=COUNT_JSON_PATH,
path_in_repo=COUNT_JSON_REPO_PATH,
repo_id=repo_id,
repo_type="dataset",
token=hf_token,
commit_message=f"Update count.json after submission by {username}"
)
except Exception as e:
print(f"上传出错: {e}")"""
def save_all_results_to_file(all_results, user_data):
repo_id = "intersteller2887/Turing-test-dataset-en"
username = user_data.get("username", "user")
timestamp = pd.Timestamp.now().strftime('%Y%m%d_%H%M%S')
submission_filename = f"submissions_{username}_{timestamp}.json"
user_info_clean = {
k: v for k, v in user_data.items() if k not in ["question_set"]
}
final_data_package = {
"user_info": user_info_clean,
"results": all_results
}
json_string = json.dumps(final_data_package, ensure_ascii=False, indent=4)
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise Exception("HF_TOKEN not found. Cannot upload to the Hub.")
api = HfApi()
# 上传提交文件(不再使用装饰器,直接调用)
api.upload_file(
path_or_fileobj=bytes(json_string, "utf-8"),
path_in_repo=f"submissions/{submission_filename}",
repo_id=repo_id,
repo_type="dataset",
token=hf_token,
commit_message=f"Add new submission from {username}"
)
try:
with FileLock(COUNT_JSON_PATH + ".lock", timeout=5):
with open(COUNT_JSON_PATH, "r", encoding="utf-8") as f:
count_data_str = f.read()
api.upload_file(
path_or_fileobj=bytes(count_data_str, "utf-8"),
path_in_repo=COUNT_JSON_REPO_PATH,
repo_id=repo_id,
repo_type="dataset",
token=hf_token,
commit_message=f"Update count.json after submission by {username}"
)
except Exception as e:
print(f"上传 count.json 失败: {e}")
# ==============================================================================
# Gradio 界面定义 (Gradio UI Definition)
# ==============================================================================
with gr.Blocks(theme=gr.themes.Soft(), css=".gradio-container {max-width: 960px !important}") as demo:
user_data_state = gr.State({})
current_question_index = gr.State(0)
current_test_dimension_index = gr.State(0)
current_question_selections = gr.State({})
test_results = gr.State([])
welcome_page = gr.Column(visible=True)
info_page = gr.Column(visible=False)
sample_page = gr.Column(visible=False)
pretest_page = gr.Column(visible=False)
test_page = gr.Column(visible=False)
final_judgment_page = gr.Column(visible=False)
result_page = gr.Column(visible=False)
pages = {
"welcome": welcome_page, "info": info_page, "sample": sample_page,
"pretest": pretest_page, "test": test_page, "final_judgment": final_judgment_page,
"result": result_page
}
with welcome_page:
gr.Markdown("# Can you spot the hidden AI?\nListen to the following conversations. Try to tell which respondent is an AI.")
start_btn = gr.Button("Start", variant="primary")
with info_page:
gr.Markdown("## Basic Information")
username_input = gr.Textbox(label="Username", placeholder="Please enter your nickname")
age_input = gr.Radio(["Under 18", "18-25", "26-35", "36-50", "Over 50"], label="Age")
gender_input = gr.Radio(["Male", "Female", "Other"], label="Gender")
education_input = gr.Radio(["High school or below", "Bachelor", "Master", "PhD", "Other (please specify)"], label="Education Level")
education_other_input = gr.Textbox(label="Please enter your education", visible=False, interactive=False)
ai_experience_input = gr.Radio([
"Never used",
"Occasionally exposed (e.g., watching others use)",
"Used a few times, understand basic functions",
"Use frequently, have some experience",
"Very familiar, have in-depth experience with multiple AI tools"
], label="Familiarity with AI Tools")
submit_info_btn = gr.Button("Submit and Start Learning Sample", variant="primary", interactive=False)
with sample_page:
gr.Markdown("## Sample Analysis\nPlease select a dimension to study and practice scoring. All dimensions share the same sample audio.")
sample_dimension_selector = gr.Radio(DIMENSION_TITLES, label="Select Learning Dimension", value=DIMENSION_TITLES[0])
with gr.Row():
with gr.Column(scale=1):
# sample_audio = gr.Audio(label="Sample Audio", value=DIMENSIONS_DATA[0]["audio"])
sample_audio = gr.Audio(label="Sample Audio", value=sample1_audio_path)
with gr.Column(scale=2):
with gr.Column(visible=True) as interactive_view:
gr.Markdown("#### Please rate the following features (0-5 points. 0 - Feature not present; 1 - Machine; 3 - Neutral; 5 - Human)")
sample_sliders = [gr.Slider(minimum=0, maximum=5, step=1, label=f"Sub-dim {i+1}", visible=False, interactive=True) for i in range(MAX_SUB_DIMS)]
with gr.Column(visible=False) as reference_view:
gr.Markdown("### Reference Answer Explanation (1-5 points. 1 = Machine-like, 5 = Human-like)")
reference_sliders = [gr.Slider(minimum=0, maximum=5, step=1, label=f"Sub-dim {i+1}", visible=False, interactive=False) for i in range(MAX_SUB_DIMS)]
with gr.Row():
reference_btn = gr.Button("Reference")
go_to_pretest_btn = gr.Button("Got it, start the test", variant="primary")
with pretest_page:
gr.Markdown("""## Pre-Test Instructions
- For each question, you'll evaluate the **response** (not the initiator) across **5 dimensions**.
- Under each dimension, score **every listed feature** from **0 to 5**:
### 🔢 Scoring Guide:
- **0** – The feature is **not present** *(some features are always present, so use 1–5 in those cases)*
- **1** – Strongly machine-like
- **2** – Somewhat machine-like
- **3** – Neutral (no clear human or machine lean)
- **4** – Somewhat human-like
- **5** – Strongly human-like
- After rating all dimensions, make a final judgment: is the **responder** a human or an AI?
- You can freely switch between dimensions using the **Previous** and **Next** buttons.
---
### ⚠️ Important Notes:
- Focus on whether the **responder's speech** sounds more **human-like or machine-like** for each feature — not just whether the feature is "present".
> For example: correct pronunciation doesn't always mean "human", and mispronunciation doesn't mean "AI". Think in terms of human-likeness.
- Even if you're confident early on about the responder's identity, still evaluate **each dimension independently**.
Avoid just labeling all dimensions as "machine-like" or "human-like" without listening carefully.
""")
go_to_test_btn = gr.Button("Start the Test", variant="primary")
with test_page:
gr.Markdown("## Formal Test")
question_progress_text = gr.Markdown()
test_dimension_title = gr.Markdown()
test_audio = gr.Audio(label="Test Audio")
gr.Markdown("--- \n ### Please rate the respondent (not the initiator) in the conversation based on the following features (0-5 points. 0 - Feature not present; 1 - Machine; 3 - Neutral; 5 - Human)")
test_sliders = [gr.Slider(minimum=0, maximum=5, step=1, label=f"Sub-dim {i+1}", visible=False, interactive=True) for i in range(MAX_SUB_DIMS)]
with gr.Row():
prev_dim_btn = gr.Button("Previous Dimension")
next_dim_btn = gr.Button("Next Dimension", variant="primary")
with final_judgment_page:
gr.Markdown("## Final Judgment")
gr.Markdown("You have completed scoring for all dimensions. Please make a final judgment based on your overall impression.")
final_human_robot_radio = gr.Radio(["👤 Human", "🤖 AI"], label="Please determine the respondent type (required)")
submit_final_answer_btn = gr.Button("Submit Answer for This Question", variant="primary", interactive=False)
with result_page:
gr.Markdown("## Test Completed")
result_text = gr.Markdown()
back_to_welcome_btn = gr.Button("Back to Main Page", variant="primary")
# ==============================================================================
# 事件绑定 (Event Binding) & IO 列表定义
# ==============================================================================
sample_init_outputs = [
info_page, sample_page, user_data_state, sample_dimension_selector,
sample_audio, interactive_view, reference_view, reference_btn
] + sample_sliders + reference_sliders
test_init_outputs = [
pretest_page, test_page, final_judgment_page, result_page,
current_question_index, current_test_dimension_index, current_question_selections,
question_progress_text, test_dimension_title, test_audio,
prev_dim_btn, next_dim_btn,
final_human_robot_radio, submit_final_answer_btn,
] + test_sliders
nav_inputs = [current_question_index, current_test_dimension_index, current_question_selections] + test_sliders
nav_outputs = [
test_page, final_judgment_page,
current_question_index, current_test_dimension_index, current_question_selections,
question_progress_text, test_dimension_title, test_audio,
final_human_robot_radio, submit_final_answer_btn,
prev_dim_btn, next_dim_btn,
] + test_sliders
full_outputs_with_results = test_init_outputs + [test_results, result_text]
# start_btn.click(fn=start_challenge, outputs=[welcome_page, info_page])
start_btn.click(
fn=start_challenge,
inputs=[user_data_state],
outputs=[welcome_page, info_page, user_data_state]
)
for comp in [age_input, gender_input, education_input, education_other_input, ai_experience_input]:
comp.change(
fn=check_info_complete,
inputs=[username_input, age_input, gender_input, education_input, education_other_input, ai_experience_input],
outputs=submit_info_btn
)
education_input.change(fn=toggle_education_other, inputs=education_input, outputs=education_other_input)
submit_info_btn.click(
fn=show_sample_page_and_init,
inputs=[username_input, age_input, gender_input, education_input, education_other_input, ai_experience_input, user_data_state],
outputs=sample_init_outputs
)
sample_dimension_selector.change(
fn=update_sample_view,
inputs=sample_dimension_selector,
outputs=[sample_audio, interactive_view, reference_view, reference_btn] + sample_sliders + reference_sliders
)
reference_btn.click(
fn=toggle_reference_view,
inputs=reference_btn,
outputs=[interactive_view, reference_view, reference_btn]
)
go_to_pretest_btn.click(lambda: (gr.update(visible=False), gr.update(visible=True)), outputs=[sample_page, pretest_page])
go_to_test_btn.click(
fn=lambda user: init_test_question(user, 0) + ([], gr.update()),
inputs=[user_data_state],
outputs=full_outputs_with_results
)
prev_dim_btn.click(
fn=lambda q,d,s, *sliders: navigate_dimensions("prev", q,d,s, *sliders),
inputs=nav_inputs, outputs=nav_outputs
)
next_dim_btn.click(
fn=lambda q,d,s, *sliders: navigate_dimensions("next", q,d,s, *sliders),
inputs=nav_inputs, outputs=nav_outputs
)
final_human_robot_radio.change(
fn=lambda choice: gr.update(interactive=bool(choice)),
inputs=final_human_robot_radio,
outputs=submit_final_answer_btn
)
submit_final_answer_btn.click(
fn=submit_question_and_advance,
inputs=[current_question_index, current_test_dimension_index, current_question_selections, final_human_robot_radio, test_results, user_data_state],
outputs=full_outputs_with_results
)
back_to_welcome_btn.click(fn=back_to_welcome, outputs=list(pages.values()) + [user_data_state, current_question_index, current_test_dimension_index, current_question_selections, test_results])
# ==============================================================================
# 程序入口 (Entry Point)
# ==============================================================================
if __name__ == "__main__":
if not os.path.exists("audio"):
os.makedirs("audio")
if "SPACE_ID" in os.environ:
print("Running in a Hugging Face Space, checking for audio files...")
# all_files = [q["audio"] for q in QUESTION_SET] + [d["audio"] for d in DIMENSIONS_DATA]
all_files = [d["audio"] for d in DIMENSIONS_DATA]
for audio_file in set(all_files):
if not os.path.exists(audio_file):
print(f"⚠️ Warning: Audio file not found: {audio_file}")
demo.launch(debug=True) |