File size: 25,160 Bytes
2ccb279 616d667 2ccb279 616d667 2ccb279 616d667 2ccb279 616d667 2ccb279 616d667 2ccb279 616d667 2ccb279 616d667 2ccb279 616d667 aa595c3 bff727e aa595c3 bff727e aa595c3 bff727e aa595c3 bff727e aa595c3 616d667 aa595c3 616d667 aa595c3 bff727e aa595c3 616d667 aa595c3 616d667 aa595c3 616d667 aa595c3 616d667 aa595c3 616d667 aa595c3 bff727e a405ce7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
# import gradio as gr
# import polars as pl
# # Path for the combined Parquet file
# COMBINED_PARQUET_PATH = "datasetcards.parquet"
# ROWS_PER_PAGE = 50
# # Lazy load dataset
# lazy_df = pl.scan_parquet(COMBINED_PARQUET_PATH)
# lazy_df = lazy_df.sort(
# by=["downloads", "last_modified"],
# descending=[True, True]
# )
# # Helper function to fetch a page
# def get_page(lazy_df: pl.LazyFrame, page: int, column: str = None, query: str = ""):
# filtered_df = lazy_df
# if column and query:
# query_lower = query.lower().strip()
# filtered_df = filtered_df.with_columns([
# pl.col(column).cast(pl.Utf8).str.to_lowercase().alias(column)
# ]).filter(pl.col(column).str.contains(query_lower, literal=False))
# start = page * ROWS_PER_PAGE
# page_df = filtered_df.slice(start, ROWS_PER_PAGE).collect().to_pandas()
# # Replace NaN/None with empty string for display
# page_df = page_df.fillna("")
# total_rows = filtered_df.collect().height
# total_pages = (total_rows - 1) // ROWS_PER_PAGE + 1
# return page_df, total_pages
# # Initialize first page
# initial_df, total_pages = get_page(lazy_df, 0)
# columns = list(initial_df.columns)
# with gr.Blocks() as demo:
# gr.Markdown("## Dataset Insight Portal")
# gr.Markdown("This space allows you to explore the dataset of DatasetCards.<br>"
# "You can navigate pages, search within columns, and inspect the dataset easily.<br>"
# )
# # Pagination controls
# with gr.Row():
# prev_btn = gr.Button("Previous", elem_id="small-btn")
# next_btn = gr.Button("Next", elem_id="small-btn")
# page_number = gr.Number(value=0, label="Page", precision=0)
# total_pages_display = gr.Label(value=f"Total Pages: {total_pages}")
# # Data table
# data_table = gr.Dataframe(
# value=initial_df, headers=columns, datatype="str",
# interactive=False, row_count=ROWS_PER_PAGE
# )
# # Column search
# with gr.Row():
# col_dropdown = gr.Dropdown(choices=columns, label="Column")
# search_text = gr.Textbox(label="Search")
# search_btn = gr.Button("Search", elem_id="small-btn")
# reset_btn = gr.Button("Reset", elem_id="small-btn")
# # --- Functions ---
# current_lazy_df = lazy_df # single dataset
# def next_page_func(page, column, query):
# page += 1
# page_df, total_pages = get_page(current_lazy_df, page, column, query)
# if page >= total_pages:
# page = total_pages - 1
# page_df, total_pages = get_page(current_lazy_df, page, column, query)
# return page_df, f"Total Pages: {total_pages}", page
# def prev_page_func(page, column, query):
# page -= 1
# page = max(0, page)
# page_df, total_pages = get_page(current_lazy_df, page, column, query)
# return page_df, f"Total Pages: {total_pages}", page
# def search_func(column, query):
# page_df, total_pages = get_page(current_lazy_df, 0, column, query)
# return page_df, f"Total Pages: {total_pages}", 0
# def reset_func():
# page_df, total_pages = get_page(current_lazy_df, 0)
# return page_df, f"Total Pages: {total_pages}", 0
# # --- Event Listeners ---
# next_btn.click(next_page_func, [page_number, col_dropdown, search_text], [data_table, total_pages_display, page_number])
# prev_btn.click(prev_page_func, [page_number, col_dropdown, search_text], [data_table, total_pages_display, page_number])
# search_btn.click(search_func, [col_dropdown, search_text], [data_table, total_pages_display, page_number])
# reset_btn.click(reset_func, [], [data_table, total_pages_display, page_number])
# demo.launch()
# import gradio as gr
# import polars as pl
# COMBINED_PARQUET_PATH = "datasetcards.parquet"
# ROWS_PER_PAGE = 50
# # Load dataset
# df = pl.read_parquet(COMBINED_PARQUET_PATH) # eager DataFrame
# # Columns with dropdown instead of text search
# DROPDOWN_COLUMNS = ["reason", "category", "field", "keyword"]
# # Get unique values for the dropdown columns
# unique_values = {
# col: sorted(df[col].drop_nulls().unique().to_list()) for col in DROPDOWN_COLUMNS
# }
# # Get page helper
# def get_page(df, page, column, query):
# filtered_df = df
# if column and query:
# if column in DROPDOWN_COLUMNS:
# # Exact match from dropdown
# filtered_df = filtered_df.filter(pl.col(column) == query)
# else:
# # Text search
# q = query.lower().strip()
# filtered_df = (
# filtered_df.with_columns([
# pl.col(column).str.to_lowercase().alias(column)
# ])
# .filter(pl.col(column).str.contains(q, literal=False))
# )
# start = page * ROWS_PER_PAGE
# page_df = filtered_df[start:start + ROWS_PER_PAGE].to_pandas().fillna("")
# total_rows = filtered_df.height
# total_pages = (total_rows - 1) // ROWS_PER_PAGE + 1 if total_rows > 0 else 1
# return page_df, total_pages
# # Initial page
# initial_df, total_pages = get_page(df, 0, None, "")
# columns = list(initial_df.columns)
# # Build Gradio app
# with gr.Blocks() as demo:
# gr.Markdown("## Dataset Insight Portal")
# gr.Markdown(
# "This space allows you to explore the dataset of DatasetCards.<br>"
# "You can navigate pages, search within columns, and inspect the dataset easily.<br>"
# )
# with gr.Row():
# prev_btn = gr.Button("Previous")
# next_btn = gr.Button("Next")
# page_number = gr.Number(value=0, label="Page", precision=0)
# total_pages_display = gr.Label(value=f"Total Pages: {total_pages}")
# data_table = gr.Dataframe(
# value=initial_df,
# headers=columns,
# datatype="str",
# interactive=False,
# row_count=ROWS_PER_PAGE,
# )
# with gr.Row():
# col_dropdown = gr.Dropdown(choices=columns, label="Column to Search")
# search_text = gr.Textbox(label="Search Text")
# search_dropdown = gr.Dropdown(choices=[], label="Select Value", visible=False)
# search_btn = gr.Button("Search")
# reset_btn = gr.Button("Reset")
# # Show dropdown only for certain columns
# def update_search_input(column):
# if column in DROPDOWN_COLUMNS:
# return gr.update(choices=unique_values[column], visible=True), gr.update(visible=False)
# else:
# return gr.update(visible=False), gr.update(visible=True)
# col_dropdown.change(update_search_input, col_dropdown, [search_dropdown, search_text])
# # Search function
# def search_func(page, column, txt, ddl):
# query = ddl if column in DROPDOWN_COLUMNS else txt
# page_df, total_pages = get_page(df, page, column, query)
# return page_df, f"Total Pages: {total_pages}", 0
# def next_page(page, column, txt, ddl):
# page += 1
# query = ddl if column in DROPDOWN_COLUMNS else txt
# page_df, total_pages = get_page(df, page, column, query)
# if page >= total_pages:
# page = total_pages - 1
# page_df, total_pages = get_page(df, page, column, query)
# return page_df, f"Total Pages: {total_pages}", page
# def prev_page(page, column, txt, ddl):
# page = max(0, page - 1)
# query = ddl if column in DROPDOWN_COLUMNS else txt
# page_df, total_pages = get_page(df, page, column, query)
# return page_df, f"Total Pages: {total_pages}", page
# def reset_func():
# page_df, total_pages = get_page(df, 0, None, "")
# return page_df, f"Total Pages: {total_pages}", 0, "", ""
# # Wire events
# inputs = [page_number, col_dropdown, search_text, search_dropdown]
# outputs = [data_table, total_pages_display, page_number]
# search_btn.click(search_func, inputs, outputs)
# next_btn.click(next_page, inputs, outputs)
# prev_btn.click(prev_page, inputs, outputs)
# reset_btn.click(reset_func, [], outputs + [search_text, search_dropdown])
# demo.launch()
# import gradio as gr
# import polars as pl
# from huggingface_hub import HfApi
# import re
# # --- Hugging Face Org ---
# org_name = "hugging-science"
# api = HfApi()
# def fetch_members():
# members = api.list_organization_members(org_name)
# return [member.username for member in members]
# member_list = fetch_members()
# # --- Dataset ---
# COMBINED_PARQUET_PATH = "datasetcards_new.parquet"
# UPDATED_PARQUET_PATH = "datasetcards_new.parquet"
# ROWS_PER_PAGE = 50
# # df = pl.read_parquet(COMBINED_PARQUET_PATH)
# df = pl.read_parquet(COMBINED_PARQUET_PATH)
# df = df.with_columns([
# pl.lit("todo").alias("status"),
# pl.lit("").alias("assigned_to")
# ]).sort(by=["downloads", "last_modified", "usedStorage"], descending=[True, True, True])
# if "reason" in df.columns:
# df = df.with_columns([
# pl.Series(
# "reason",
# ["short description" if x and "short description" in x.lower() else (x if x is not None else "") for x in df["reason"]]
# )
# ])
# # Add editable columns if missing
# for col in ["assigned_to", "status"]:
# if col not in df.columns:
# default_val = "" if col == "assigned_to" else "todo"
# df = df.with_columns(pl.lit(default_val).alias(col))
# else:
# # Fill nulls with default
# default_val = "" if col == "assigned_to" else "todo"
# df = df.with_columns(pl.col(col).fill_null(default_val))
# # --- Columns ---
# DROPDOWN_COLUMNS = ["reason", "category", "field", "keyword", "assigned_to", "status"]
# STATUS_OPTIONS = ["todo", "inprogress", "PR submitted", "PR merged"]
# # Prepare unique values for dropdown search
# unique_values = {col: sorted(df[col].drop_nulls().unique().to_list()) for col in DROPDOWN_COLUMNS}
# unique_values['assigned_to'] = sorted(member_list)
# unique_values['status'] = STATUS_OPTIONS
# # --- Helper to get page ---
# def get_page(df, page, column=None, query=None):
# filtered_df = df
# if column and query:
# if column in DROPDOWN_COLUMNS:
# filtered_df = filtered_df.filter(pl.col(column) == query)
# else:
# q = query.lower().strip()
# filtered_df = (
# filtered_df.with_columns([pl.col(column).str.to_lowercase().alias(column)])
# .filter(pl.col(column).str.contains(q, literal=False))
# )
# start = page * ROWS_PER_PAGE
# page_df = filtered_df[start:start + ROWS_PER_PAGE].to_pandas().fillna("")
# total_rows = filtered_df.height
# total_pages = (total_rows - 1) // ROWS_PER_PAGE + 1 if total_rows > 0 else 1
# return page_df, total_pages
# initial_df, total_pages = get_page(df, 0)
# columns = list(initial_df.columns)
# with gr.Blocks() as demo:
# gr.Markdown("""
# # Dataset Insight Portal
# Welcome! This portal helps you explore and manage datasets from our Hugging Face organization.
# ## What is this space for?
# This space provides a table of datasets along with metadata. You can:
# - Browse datasets with pagination.
# - Search datasets by various fields.
# - Assign responsibility for reviewing datasets (`assigned_to`).
# - Track progress using `status`.
# ## Why the table?
# The table gives a structured view of all datasets, making it easy to sort, filter, and update information for each dataset. It consists of all datasets until 20-09-2025.
# ## What does the table contain?
# Each row represents a dataset. Columns include:
# - **dataset_id**: Unique identifier of the dataset.
# - **dataset_url**: Link to the dataset page on Hugging Face.
# - **downloads**: Number of downloads.
# - **author**: Dataset author.
# - **license**: License type.
# - **tags**: Tags describing the dataset. Obtained from the dataset card.
# - **task_categories**: Categories of tasks the dataset is useful for. Obtained from the dataset card.
# - **last_modified**: Date of last update.
# - **field, keyword**: Metadata columns describing dataset purpose based on heuristics. Use the `field` and `keyword` to filter for science based datasets.
# - **category**: Category of the dataset (`rich` means it is good dataset card. `minimal` means it needs improvement for the reasons below).
# - **reason**: Reason why the dataset is classified as `minimal`. Options: `Failed to load card`, `No metadata and no description`, `No metadata and has description`, `Short description`.
# - **usedStorage**: Storage used by the dataset (bytes).
# - **assigned_to**: Person responsible for the dataset (editable).
# - **status**: Progress status (editable). Options: `todo`, `inprogress`, `PR submitted`, `PR merged`.
# ## How to use search
# - Select a **column** from the dropdown.
# - If the column is textual, type your query in the text box.
# - If the column is a dropdown (like `assigned_to` or `status`), select the value from the dropdown.
# - Click **Search** to filter the table.
# ## How to add or update `assigned_to` and `status`
# 1. Search for the **dataset_id** initially.
# 2. Then, select the **dataset_id** from the dropdown below the table.
# 3. Choose the person responsible in **Assigned To**. If you are a member of the organization, your username should appear in the list. Else refresh and try again.
# 4. Select the current status in **Status**.
# 5. Click **Save Changes** to update the table and persist the changes.
# 6. Use **Refresh All** to reload the table and the latest members list.
# This portal makes it easy to keep track of dataset reviews, assignments, and progress all in one place.
# """)
# # --- Pagination controls ---
# with gr.Row():
# prev_btn = gr.Button("Previous")
# next_btn = gr.Button("Next")
# page_number = gr.Number(value=0, label="Page", precision=0)
# total_pages_display = gr.Label(value=f"Total Pages: {total_pages}")
# # --- Data table ---
# data_table = gr.Dataframe(
# value=initial_df,
# headers=columns,
# datatype="str",
# interactive=False,
# row_count=ROWS_PER_PAGE
# )
# # --- Search controls ---
# with gr.Row():
# col_dropdown = gr.Dropdown(choices=columns, label="Column to Search")
# search_text = gr.Textbox(label="Search Text")
# search_dropdown = gr.Dropdown(choices=[], label="Select Value", visible=False)
# search_btn = gr.Button("Search")
# reset_btn = gr.Button("Reset")
# # --- Dataset selection & editable fields ---
# selected_dataset_id = gr.Dropdown(label="Select dataset_id", choices=initial_df['dataset_id'].tolist())
# assigned_to_input = gr.Dropdown(choices=member_list, label="Assigned To")
# # status_input = gr.Dropdown(choices=STATUS_OPTIONS, label="Status")
# status_input = gr.Dropdown(choices=STATUS_OPTIONS, label="Status", value="todo")
# save_btn = gr.Button("Save Changes")
# refresh_btn = gr.Button("Refresh All")
# save_message = gr.Textbox(label="Save Status", interactive=False)
# # --- Update search input depending on column ---
# def update_search_input(column):
# if column in DROPDOWN_COLUMNS:
# return gr.update(choices=unique_values[column], visible=True), gr.update(visible=False)
# else:
# return gr.update(visible=False), gr.update(visible=True)
# col_dropdown.change(update_search_input, col_dropdown, [search_dropdown, search_text])
# # --- Prefill editable fields ---
# def prefill_fields(dataset_id):
# if not dataset_id:
# return "", "todo"
# dataset_id = str(dataset_id)
# filtered = [row for row in df.to_dicts() if str(row.get("dataset_id")) == dataset_id]
# if not filtered:
# return "", "todo"
# row = filtered[0]
# return row.get("assigned_to", ""), row.get("status", "todo")
# selected_dataset_id.change(prefill_fields, selected_dataset_id, [assigned_to_input, status_input])
# # --- Search function ---
# def search_func(page, column, txt, ddl):
# query = ddl if column in DROPDOWN_COLUMNS else txt
# page_df, total_pages = get_page(df, page, column, query)
# return page_df, f"Total Pages: {total_pages}", 0, gr.update(choices=page_df['dataset_id'].tolist())
# # --- Pagination functions ---
# def next_page(page, column, txt, ddl):
# page += 1
# query = ddl if column in DROPDOWN_COLUMNS else txt
# page_df, total_pages = get_page(df, page, column, query)
# if page >= total_pages:
# page = total_pages - 1
# page_df, total_pages = get_page(df, page, column, query)
# return page_df, f"Total Pages: {total_pages}", page, gr.update(choices=page_df['dataset_id'].tolist())
# def prev_page(page, column, txt, ddl):
# page = max(0, page - 1)
# query = ddl if column in DROPDOWN_COLUMNS else txt
# page_df, total_pages = get_page(df, page, column, query)
# return page_df, f"Total Pages: {total_pages}", page, gr.update(choices=page_df['dataset_id'].tolist())
# def reset_func():
# page_df, total_pages = get_page(df, 0)
# return page_df, f"Total Pages: {total_pages}", 0, gr.update(choices=page_df['dataset_id'].tolist())
# # --- Save changes & refresh ---
# def save_changes(dataset_id, assigned_to_val, status_val, page_val, col, txt, ddl):
# global df
# if not dataset_id:
# return gr.update(value="Please select a row first."), None, None, None
# df = df.with_columns([
# pl.when(pl.col("dataset_id") == dataset_id).then(pl.lit(assigned_to_val)).otherwise(pl.col("assigned_to")).alias("assigned_to"),
# pl.when(pl.col("dataset_id") == dataset_id).then(pl.lit(status_val)).otherwise(pl.col("status")).alias("status")
# ])
# df.write_parquet(UPDATED_PARQUET_PATH)
# page_df, total_pages = get_page(df, page_val, col, txt if col not in DROPDOWN_COLUMNS else ddl)
# return (
# gr.update(value=f"Saved changes for dataset_id: {dataset_id}"),
# page_df,
# gr.update(choices=page_df['dataset_id'].tolist()),
# f"Total Pages: {total_pages}"
# )
# # --- Refresh All: table + members ---
# def refresh_all(page, column, txt, ddl):
# global df, member_list, unique_values
# # Refresh members
# member_list = fetch_members()
# unique_values['assigned_to'] = sorted(member_list)
# # Refresh table
# try:
# df = pl.read_parquet(UPDATED_PARQUET_PATH)
# except FileNotFoundError:
# pass
# page_df, total_pages = get_page(df, page, column, txt if column not in DROPDOWN_COLUMNS else ddl)
# return page_df, f"Total Pages: {total_pages}", page, gr.update(choices=page_df['dataset_id'].tolist()), gr.update(choices=member_list)
# # --- Wire buttons ---
# inputs_search = [page_number, col_dropdown, search_text, search_dropdown]
# outputs_search = [data_table, total_pages_display, page_number, selected_dataset_id]
# search_btn.click(search_func, inputs_search, outputs_search)
# next_btn.click(next_page, inputs_search, outputs_search)
# prev_btn.click(prev_page, inputs_search, outputs_search)
# reset_btn.click(reset_func, [], outputs_search)
# save_btn.click(
# save_changes,
# [selected_dataset_id, assigned_to_input, status_input, page_number, col_dropdown, search_text, search_dropdown],
# [save_message, data_table, selected_dataset_id, total_pages_display]
# )
# refresh_btn.click(
# refresh_all,
# inputs=[page_number, col_dropdown, search_text, search_dropdown],
# outputs=[data_table, total_pages_display, page_number, selected_dataset_id, assigned_to_input]
# )
# demo.launch()
import gradio as gr
import polars as pl
import os
import subprocess
import threading
import time
# --- Config ---
COMBINED_PARQUET_PATH = "datasetcards_new.parquet"
UPDATED_PARQUET_PATH = "datasetcards_new.parquet" # overwrite same file
ROWS_PER_PAGE = 50
ORG_NAME = "hugging-science" # replace with your org
SPACE_NAME = "dataset-insight-portal" # replace with your space
# --- Load dataset ---
df = pl.read_parquet(COMBINED_PARQUET_PATH).with_columns([
pl.lit("").alias("assigned_to"),
pl.lit("todo").alias("status")
])
columns = df.columns
total_pages = (len(df) + ROWS_PER_PAGE - 1) // ROWS_PER_PAGE
# --- Git push helpers ---
def save_and_push():
"""Commit and push parquet file changes to the repo."""
try:
subprocess.run(["git", "config", "--global", "user.email", "[email protected]"])
subprocess.run(["git", "config", "--global", "user.name", "Santosh Sanjeev"])
hf_token = os.environ["HF_TOKEN"]
repo_url = f"https://user:{hf_token}@huggingface.co/spaces/{ORG_NAME}/{SPACE_NAME}"
subprocess.run(["git", "remote", "set-url", "origin", repo_url])
# Commit only if parquet changed
subprocess.run(["git", "add", UPDATED_PARQUET_PATH])
result = subprocess.run(["git", "diff", "--cached", "--quiet"])
if result.returncode != 0:
subprocess.run(["git", "commit", "-m", "Auto-update parquet file"])
subprocess.run(["git", "push", "origin", "main"])
print("โ
Pushed parquet to repo")
else:
print("โน๏ธ No parquet changes to push")
except Exception as e:
print("โ ๏ธ Push failed:", e)
def auto_push_loop(interval=300):
"""Run save_and_push every `interval` seconds (default 5 min)."""
while True:
save_and_push()
time.sleep(interval)
# --- Gradio app functions ---
def get_page(page_num, col, search_text, search_dropdown):
global df
filtered = df
if col and col in df.columns:
if col in DROPDOWN_COLUMNS and search_dropdown:
filtered = filtered.filter(pl.col(col) == search_dropdown)
elif search_text:
filtered = filtered.filter(pl.col(col).cast(str).str.contains(search_text, literal=False))
total_pages = (len(filtered) + ROWS_PER_PAGE - 1) // ROWS_PER_PAGE
start, end = (page_num - 1) * ROWS_PER_PAGE, page_num * ROWS_PER_PAGE
page_df = filtered[start:end]
return page_df.to_pandas(), f"of {total_pages}", page_num, "", "", ""
def save_changes(dataset_id, assigned_to, status):
global df
mask = df["dataset_id"] == dataset_id
if mask.any():
df = df.with_columns([
pl.when(mask).then(assigned_to).otherwise(df["assigned_to"]).alias("assigned_to"),
pl.when(mask).then(status).otherwise(df["status"]).alias("status")
])
df.write_parquet(UPDATED_PARQUET_PATH)
save_and_push() # push immediately after change
return f"Saved for {dataset_id} โ
"
def refresh_all(page_num, col, search_text, search_dropdown):
return get_page(page_num, col, search_text, search_dropdown)
# --- UI ---
DROPDOWN_COLUMNS = ["status", "assigned_to"]
with gr.Blocks() as demo:
with gr.Row():
col_dropdown = gr.Dropdown(choices=columns, label="Search Column")
search_text = gr.Textbox(label="Search Text")
search_dropdown = gr.Dropdown(choices=["todo", "inprogress", "PR submitted", "PR merged"], label="Status")
with gr.Row():
page_number = gr.Number(value=1, precision=0, label="Page #")
total_pages_display = gr.Textbox(value=f"of {total_pages}", interactive=False)
data_table = gr.Dataframe(headers=columns, datatype=["str"] * len(columns), row_count=ROWS_PER_PAGE)
selected_dataset_id = gr.Textbox(label="Selected Dataset ID", interactive=False)
assigned_to_input = gr.Textbox(label="Assigned To")
status_input = gr.Dropdown(choices=["todo", "inprogress", "PR submitted", "PR merged"], label="Status")
save_btn = gr.Button("Save Changes")
refresh_btn = gr.Button("Refresh")
output_msg = gr.Textbox(label="Message", interactive=False)
page_number.change(get_page, inputs=[page_number, col_dropdown, search_text, search_dropdown],
outputs=[data_table, total_pages_display, page_number,
selected_dataset_id, assigned_to_input, status_input])
save_btn.click(save_changes, inputs=[selected_dataset_id, assigned_to_input, status_input], outputs=[output_msg])
refresh_btn.click(refresh_all, inputs=[page_number, col_dropdown, search_text, search_dropdown],
outputs=[data_table, total_pages_display, page_number,
selected_dataset_id, assigned_to_input, status_input])
# ๐ Start auto-push loop
threading.Thread(target=auto_push_loop, args=(300,), daemon=True).start()
demo.launch() |