File size: 25,160 Bytes
2ccb279
 
 
616d667
 
2ccb279
 
 
616d667
 
 
 
 
 
2ccb279
 
 
 
 
 
 
 
 
 
 
616d667
 
 
 
2ccb279
 
 
 
616d667
2ccb279
616d667
2ccb279
 
 
 
616d667
 
 
2ccb279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616d667
2ccb279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616d667
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa595c3
 
 
 
 
 
 
bff727e
aa595c3
 
 
bff727e
aa595c3
bff727e
aa595c3
 
 
 
bff727e
aa595c3
616d667
aa595c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616d667
aa595c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bff727e
 
 
aa595c3
616d667
aa595c3
 
 
 
 
616d667
aa595c3
616d667
aa595c3
 
 
616d667
 
aa595c3
616d667
aa595c3
 
 
 
 
 
 
 
 
 
 
 
bff727e
a405ce7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
# import gradio as gr
# import polars as pl

# # Path for the combined Parquet file
# COMBINED_PARQUET_PATH = "datasetcards.parquet"

# ROWS_PER_PAGE = 50

# # Lazy load dataset
# lazy_df = pl.scan_parquet(COMBINED_PARQUET_PATH)
# lazy_df = lazy_df.sort(
#     by=["downloads", "last_modified"],
#     descending=[True, True]
# )

# # Helper function to fetch a page
# def get_page(lazy_df: pl.LazyFrame, page: int, column: str = None, query: str = ""):
#     filtered_df = lazy_df
#     if column and query:
#         query_lower = query.lower().strip()
#         filtered_df = filtered_df.with_columns([
#             pl.col(column).cast(pl.Utf8).str.to_lowercase().alias(column)
#         ]).filter(pl.col(column).str.contains(query_lower, literal=False))
#     start = page * ROWS_PER_PAGE
#     page_df = filtered_df.slice(start, ROWS_PER_PAGE).collect().to_pandas()
    
#     # Replace NaN/None with empty string for display
#     page_df = page_df.fillna("")

#     total_rows = filtered_df.collect().height
#     total_pages = (total_rows - 1) // ROWS_PER_PAGE + 1
#     return page_df, total_pages


# # Initialize first page
# initial_df, total_pages = get_page(lazy_df, 0)
# columns = list(initial_df.columns)

# with gr.Blocks() as demo:
#     gr.Markdown("## Dataset Insight Portal")
#     gr.Markdown("This space allows you to explore the dataset of DatasetCards.<br>"
#                 "You can navigate pages, search within columns, and inspect the dataset easily.<br>"
#                 )

#     # Pagination controls
#     with gr.Row():
#         prev_btn = gr.Button("Previous", elem_id="small-btn")
#         next_btn = gr.Button("Next", elem_id="small-btn")
#         page_number = gr.Number(value=0, label="Page", precision=0)
#         total_pages_display = gr.Label(value=f"Total Pages: {total_pages}")

#     # Data table
#     data_table = gr.Dataframe(
#         value=initial_df, headers=columns, datatype="str",
#         interactive=False, row_count=ROWS_PER_PAGE
#     )

#     # Column search
#     with gr.Row():
#         col_dropdown = gr.Dropdown(choices=columns, label="Column")
#         search_text = gr.Textbox(label="Search")
#         search_btn = gr.Button("Search", elem_id="small-btn")
#         reset_btn = gr.Button("Reset", elem_id="small-btn")

#     # --- Functions ---
#     current_lazy_df = lazy_df  # single dataset

#     def next_page_func(page, column, query):
#         page += 1
#         page_df, total_pages = get_page(current_lazy_df, page, column, query)
#         if page >= total_pages:
#             page = total_pages - 1
#             page_df, total_pages = get_page(current_lazy_df, page, column, query)
#         return page_df, f"Total Pages: {total_pages}", page

#     def prev_page_func(page, column, query):
#         page -= 1
#         page = max(0, page)
#         page_df, total_pages = get_page(current_lazy_df, page, column, query)
#         return page_df, f"Total Pages: {total_pages}", page

#     def search_func(column, query):
#         page_df, total_pages = get_page(current_lazy_df, 0, column, query)
#         return page_df, f"Total Pages: {total_pages}", 0

#     def reset_func():
#         page_df, total_pages = get_page(current_lazy_df, 0)
#         return page_df, f"Total Pages: {total_pages}", 0

#     # --- Event Listeners ---
#     next_btn.click(next_page_func, [page_number, col_dropdown, search_text], [data_table, total_pages_display, page_number])
#     prev_btn.click(prev_page_func, [page_number, col_dropdown, search_text], [data_table, total_pages_display, page_number])
#     search_btn.click(search_func, [col_dropdown, search_text], [data_table, total_pages_display, page_number])
#     reset_btn.click(reset_func, [], [data_table, total_pages_display, page_number])

# demo.launch()


# import gradio as gr
# import polars as pl

# COMBINED_PARQUET_PATH = "datasetcards.parquet"
# ROWS_PER_PAGE = 50

# # Load dataset
# df = pl.read_parquet(COMBINED_PARQUET_PATH)  # eager DataFrame

# # Columns with dropdown instead of text search
# DROPDOWN_COLUMNS = ["reason", "category", "field", "keyword"]

# # Get unique values for the dropdown columns
# unique_values = {
#     col: sorted(df[col].drop_nulls().unique().to_list()) for col in DROPDOWN_COLUMNS
# }

# # Get page helper
# def get_page(df, page, column, query):
#     filtered_df = df

#     if column and query:
#         if column in DROPDOWN_COLUMNS:
#             # Exact match from dropdown
#             filtered_df = filtered_df.filter(pl.col(column) == query)
#         else:
#             # Text search
#             q = query.lower().strip()
#             filtered_df = (
#                 filtered_df.with_columns([
#                     pl.col(column).str.to_lowercase().alias(column)
#                 ])
#                 .filter(pl.col(column).str.contains(q, literal=False))
#             )

#     start = page * ROWS_PER_PAGE
#     page_df = filtered_df[start:start + ROWS_PER_PAGE].to_pandas().fillna("")
#     total_rows = filtered_df.height
#     total_pages = (total_rows - 1) // ROWS_PER_PAGE + 1 if total_rows > 0 else 1

#     return page_df, total_pages


# # Initial page
# initial_df, total_pages = get_page(df, 0, None, "")
# columns = list(initial_df.columns)

# # Build Gradio app
# with gr.Blocks() as demo:
#     gr.Markdown("## Dataset Insight Portal")
#     gr.Markdown(
#         "This space allows you to explore the dataset of DatasetCards.<br>"
#         "You can navigate pages, search within columns, and inspect the dataset easily.<br>"
#     )

#     with gr.Row():
#         prev_btn = gr.Button("Previous")
#         next_btn = gr.Button("Next")
#         page_number = gr.Number(value=0, label="Page", precision=0)
#         total_pages_display = gr.Label(value=f"Total Pages: {total_pages}")

#     data_table = gr.Dataframe(
#         value=initial_df,
#         headers=columns,
#         datatype="str",
#         interactive=False,
#         row_count=ROWS_PER_PAGE,
#     )

#     with gr.Row():
#         col_dropdown = gr.Dropdown(choices=columns, label="Column to Search")
#         search_text = gr.Textbox(label="Search Text")
#         search_dropdown = gr.Dropdown(choices=[], label="Select Value", visible=False)
#         search_btn = gr.Button("Search")
#         reset_btn = gr.Button("Reset")

#     # Show dropdown only for certain columns
#     def update_search_input(column):
#         if column in DROPDOWN_COLUMNS:
#             return gr.update(choices=unique_values[column], visible=True), gr.update(visible=False)
#         else:
#             return gr.update(visible=False), gr.update(visible=True)

#     col_dropdown.change(update_search_input, col_dropdown, [search_dropdown, search_text])

#     # Search function
#     def search_func(page, column, txt, ddl):
#         query = ddl if column in DROPDOWN_COLUMNS else txt
#         page_df, total_pages = get_page(df, page, column, query)
#         return page_df, f"Total Pages: {total_pages}", 0

#     def next_page(page, column, txt, ddl):
#         page += 1
#         query = ddl if column in DROPDOWN_COLUMNS else txt
#         page_df, total_pages = get_page(df, page, column, query)
#         if page >= total_pages:
#             page = total_pages - 1
#             page_df, total_pages = get_page(df, page, column, query)
#         return page_df, f"Total Pages: {total_pages}", page

#     def prev_page(page, column, txt, ddl):
#         page = max(0, page - 1)
#         query = ddl if column in DROPDOWN_COLUMNS else txt
#         page_df, total_pages = get_page(df, page, column, query)
#         return page_df, f"Total Pages: {total_pages}", page

#     def reset_func():
#         page_df, total_pages = get_page(df, 0, None, "")
#         return page_df, f"Total Pages: {total_pages}", 0, "", ""

#     # Wire events
#     inputs = [page_number, col_dropdown, search_text, search_dropdown]
#     outputs = [data_table, total_pages_display, page_number]

#     search_btn.click(search_func, inputs, outputs)
#     next_btn.click(next_page, inputs, outputs)
#     prev_btn.click(prev_page, inputs, outputs)
#     reset_btn.click(reset_func, [], outputs + [search_text, search_dropdown])

# demo.launch()

# import gradio as gr
# import polars as pl
# from huggingface_hub import HfApi
# import re
# # --- Hugging Face Org ---
# org_name = "hugging-science"
# api = HfApi()

# def fetch_members():
#     members = api.list_organization_members(org_name)
#     return [member.username for member in members]

# member_list = fetch_members()

# # --- Dataset ---
# COMBINED_PARQUET_PATH = "datasetcards_new.parquet"
# UPDATED_PARQUET_PATH = "datasetcards_new.parquet"
# ROWS_PER_PAGE = 50

# # df = pl.read_parquet(COMBINED_PARQUET_PATH)
# df = pl.read_parquet(COMBINED_PARQUET_PATH)
# df = df.with_columns([
#     pl.lit("todo").alias("status"),
#     pl.lit("").alias("assigned_to")
# ]).sort(by=["downloads", "last_modified", "usedStorage"], descending=[True, True, True])

# if "reason" in df.columns:
#     df = df.with_columns([
#         pl.Series(
#             "reason",
#             ["short description" if x and "short description" in x.lower() else (x if x is not None else "") for x in df["reason"]]
#         )
#     ])




# # Add editable columns if missing
# for col in ["assigned_to", "status"]:
#     if col not in df.columns:
#         default_val = "" if col == "assigned_to" else "todo"
#         df = df.with_columns(pl.lit(default_val).alias(col))
#     else:
#         # Fill nulls with default
#         default_val = "" if col == "assigned_to" else "todo"
#         df = df.with_columns(pl.col(col).fill_null(default_val))

# # --- Columns ---
# DROPDOWN_COLUMNS = ["reason", "category", "field", "keyword", "assigned_to", "status"]
# STATUS_OPTIONS = ["todo", "inprogress", "PR submitted", "PR merged"]

# # Prepare unique values for dropdown search
# unique_values = {col: sorted(df[col].drop_nulls().unique().to_list()) for col in DROPDOWN_COLUMNS}
# unique_values['assigned_to'] = sorted(member_list)
# unique_values['status'] = STATUS_OPTIONS

# # --- Helper to get page ---
# def get_page(df, page, column=None, query=None):
#     filtered_df = df
#     if column and query:
#         if column in DROPDOWN_COLUMNS:
#             filtered_df = filtered_df.filter(pl.col(column) == query)
#         else:
#             q = query.lower().strip()
#             filtered_df = (
#                 filtered_df.with_columns([pl.col(column).str.to_lowercase().alias(column)])
#                 .filter(pl.col(column).str.contains(q, literal=False))
#             )
#     start = page * ROWS_PER_PAGE
#     page_df = filtered_df[start:start + ROWS_PER_PAGE].to_pandas().fillna("")
#     total_rows = filtered_df.height
#     total_pages = (total_rows - 1) // ROWS_PER_PAGE + 1 if total_rows > 0 else 1
#     return page_df, total_pages

# initial_df, total_pages = get_page(df, 0)
# columns = list(initial_df.columns)

# with gr.Blocks() as demo:
#     gr.Markdown("""
#     # Dataset Insight Portal

#     Welcome! This portal helps you explore and manage datasets from our Hugging Face organization.

#     ## What is this space for?
#     This space provides a table of datasets along with metadata. You can:
#     - Browse datasets with pagination.
#     - Search datasets by various fields.
#     - Assign responsibility for reviewing datasets (`assigned_to`).
#     - Track progress using `status`.

#     ## Why the table?
#     The table gives a structured view of all datasets, making it easy to sort, filter, and update information for each dataset. It consists of all datasets until 20-09-2025. 

#     ## What does the table contain?
#     Each row represents a dataset. Columns include:
#     - **dataset_id**: Unique identifier of the dataset.
#     - **dataset_url**: Link to the dataset page on Hugging Face.
#     - **downloads**: Number of downloads.
#     - **author**: Dataset author.
#     - **license**: License type.
#     - **tags**: Tags describing the dataset. Obtained from the dataset card.
#     - **task_categories**: Categories of tasks the dataset is useful for. Obtained from the dataset card.
#     - **last_modified**: Date of last update.
#     - **field, keyword**: Metadata columns describing dataset purpose based on heuristics. Use the `field` and `keyword` to filter for science based datasets.
#     - **category**: Category of the dataset (`rich` means it is good dataset card. `minimal` means it needs improvement for the reasons below).
#     - **reason**: Reason why the dataset is classified as `minimal`. Options: `Failed to load card`, `No metadata and no description`, `No metadata and has description`, `Short description`.
#     - **usedStorage**: Storage used by the dataset (bytes).
#     - **assigned_to**: Person responsible for the dataset (editable).
#     - **status**: Progress status (editable). Options: `todo`, `inprogress`, `PR submitted`, `PR merged`.

#     ## How to use search
#     - Select a **column** from the dropdown.
#     - If the column is textual, type your query in the text box.
#     - If the column is a dropdown (like `assigned_to` or `status`), select the value from the dropdown.
#     - Click **Search** to filter the table.

#     ## How to add or update `assigned_to` and `status`
#     1. Search for the **dataset_id** initially.
#     2. Then, select the **dataset_id** from the dropdown below the table.
#     3. Choose the person responsible in **Assigned To**. If you are a member of the organization, your username should appear in the list. Else refresh and try again.
#     4. Select the current status in **Status**.
#     5. Click **Save Changes** to update the table and persist the changes.
#     6. Use **Refresh All** to reload the table and the latest members list.

#     This portal makes it easy to keep track of dataset reviews, assignments, and progress all in one place.
#     """)

#     # --- Pagination controls ---
#     with gr.Row():
#         prev_btn = gr.Button("Previous")
#         next_btn = gr.Button("Next")
#         page_number = gr.Number(value=0, label="Page", precision=0)
#         total_pages_display = gr.Label(value=f"Total Pages: {total_pages}")

#     # --- Data table ---
#     data_table = gr.Dataframe(
#         value=initial_df,
#         headers=columns,
#         datatype="str",
#         interactive=False,
#         row_count=ROWS_PER_PAGE
#     )

#     # --- Search controls ---
#     with gr.Row():
#         col_dropdown = gr.Dropdown(choices=columns, label="Column to Search")
#         search_text = gr.Textbox(label="Search Text")
#         search_dropdown = gr.Dropdown(choices=[], label="Select Value", visible=False)
#         search_btn = gr.Button("Search")
#         reset_btn = gr.Button("Reset")

#     # --- Dataset selection & editable fields ---
#     selected_dataset_id = gr.Dropdown(label="Select dataset_id", choices=initial_df['dataset_id'].tolist())
#     assigned_to_input = gr.Dropdown(choices=member_list, label="Assigned To")
#     # status_input = gr.Dropdown(choices=STATUS_OPTIONS, label="Status")
#     status_input = gr.Dropdown(choices=STATUS_OPTIONS, label="Status", value="todo")


#     save_btn = gr.Button("Save Changes")
#     refresh_btn = gr.Button("Refresh All")
#     save_message = gr.Textbox(label="Save Status", interactive=False)

#     # --- Update search input depending on column ---
#     def update_search_input(column):
#         if column in DROPDOWN_COLUMNS:
#             return gr.update(choices=unique_values[column], visible=True), gr.update(visible=False)
#         else:
#             return gr.update(visible=False), gr.update(visible=True)

#     col_dropdown.change(update_search_input, col_dropdown, [search_dropdown, search_text])

#     # --- Prefill editable fields ---
#     def prefill_fields(dataset_id):
#         if not dataset_id:
#             return "", "todo"
#         dataset_id = str(dataset_id)
#         filtered = [row for row in df.to_dicts() if str(row.get("dataset_id")) == dataset_id]
#         if not filtered:
#             return "", "todo"
#         row = filtered[0]
#         return row.get("assigned_to", ""), row.get("status", "todo")

#     selected_dataset_id.change(prefill_fields, selected_dataset_id, [assigned_to_input, status_input])

#     # --- Search function ---
#     def search_func(page, column, txt, ddl):
#         query = ddl if column in DROPDOWN_COLUMNS else txt
#         page_df, total_pages = get_page(df, page, column, query)
#         return page_df, f"Total Pages: {total_pages}", 0, gr.update(choices=page_df['dataset_id'].tolist())

#     # --- Pagination functions ---
#     def next_page(page, column, txt, ddl):
#         page += 1
#         query = ddl if column in DROPDOWN_COLUMNS else txt
#         page_df, total_pages = get_page(df, page, column, query)
#         if page >= total_pages:
#             page = total_pages - 1
#             page_df, total_pages = get_page(df, page, column, query)
#         return page_df, f"Total Pages: {total_pages}", page, gr.update(choices=page_df['dataset_id'].tolist())

#     def prev_page(page, column, txt, ddl):
#         page = max(0, page - 1)
#         query = ddl if column in DROPDOWN_COLUMNS else txt
#         page_df, total_pages = get_page(df, page, column, query)
#         return page_df, f"Total Pages: {total_pages}", page, gr.update(choices=page_df['dataset_id'].tolist())

#     def reset_func():
#         page_df, total_pages = get_page(df, 0)
#         return page_df, f"Total Pages: {total_pages}", 0, gr.update(choices=page_df['dataset_id'].tolist())

#     # --- Save changes & refresh ---
#     def save_changes(dataset_id, assigned_to_val, status_val, page_val, col, txt, ddl):
#         global df
#         if not dataset_id:
#             return gr.update(value="Please select a row first."), None, None, None
#         df = df.with_columns([
#             pl.when(pl.col("dataset_id") == dataset_id).then(pl.lit(assigned_to_val)).otherwise(pl.col("assigned_to")).alias("assigned_to"),
#             pl.when(pl.col("dataset_id") == dataset_id).then(pl.lit(status_val)).otherwise(pl.col("status")).alias("status")
#         ])
#         df.write_parquet(UPDATED_PARQUET_PATH)
#         page_df, total_pages = get_page(df, page_val, col, txt if col not in DROPDOWN_COLUMNS else ddl)
#         return (
#             gr.update(value=f"Saved changes for dataset_id: {dataset_id}"),
#             page_df,
#             gr.update(choices=page_df['dataset_id'].tolist()),
#             f"Total Pages: {total_pages}"
#         )

#     # --- Refresh All: table + members ---
#     def refresh_all(page, column, txt, ddl):
#         global df, member_list, unique_values
#         # Refresh members
#         member_list = fetch_members()
#         unique_values['assigned_to'] = sorted(member_list)
#         # Refresh table
#         try:
#             df = pl.read_parquet(UPDATED_PARQUET_PATH)
#         except FileNotFoundError:
#             pass
#         page_df, total_pages = get_page(df, page, column, txt if column not in DROPDOWN_COLUMNS else ddl)
#         return page_df, f"Total Pages: {total_pages}", page, gr.update(choices=page_df['dataset_id'].tolist()), gr.update(choices=member_list)

#     # --- Wire buttons ---
#     inputs_search = [page_number, col_dropdown, search_text, search_dropdown]
#     outputs_search = [data_table, total_pages_display, page_number, selected_dataset_id]

#     search_btn.click(search_func, inputs_search, outputs_search)
#     next_btn.click(next_page, inputs_search, outputs_search)
#     prev_btn.click(prev_page, inputs_search, outputs_search)
#     reset_btn.click(reset_func, [], outputs_search)
#     save_btn.click(
#         save_changes,
#         [selected_dataset_id, assigned_to_input, status_input, page_number, col_dropdown, search_text, search_dropdown],
#         [save_message, data_table, selected_dataset_id, total_pages_display]
#     )
#     refresh_btn.click(
#         refresh_all,
#         inputs=[page_number, col_dropdown, search_text, search_dropdown],
#         outputs=[data_table, total_pages_display, page_number, selected_dataset_id, assigned_to_input]
#     )

# demo.launch()




import gradio as gr
import polars as pl
import os
import subprocess
import threading
import time

# --- Config ---
COMBINED_PARQUET_PATH = "datasetcards_new.parquet"
UPDATED_PARQUET_PATH = "datasetcards_new.parquet"  # overwrite same file
ROWS_PER_PAGE = 50
ORG_NAME = "hugging-science"   # replace with your org
SPACE_NAME = "dataset-insight-portal" # replace with your space

# --- Load dataset ---
df = pl.read_parquet(COMBINED_PARQUET_PATH).with_columns([
    pl.lit("").alias("assigned_to"),
    pl.lit("todo").alias("status")
])
columns = df.columns
total_pages = (len(df) + ROWS_PER_PAGE - 1) // ROWS_PER_PAGE

# --- Git push helpers ---
def save_and_push():
    """Commit and push parquet file changes to the repo."""
    try:
        subprocess.run(["git", "config", "--global", "user.email", "[email protected]"])
        subprocess.run(["git", "config", "--global", "user.name", "Santosh Sanjeev"])

        hf_token = os.environ["HF_TOKEN"]
        repo_url = f"https://user:{hf_token}@huggingface.co/spaces/{ORG_NAME}/{SPACE_NAME}"
        subprocess.run(["git", "remote", "set-url", "origin", repo_url])

        # Commit only if parquet changed
        subprocess.run(["git", "add", UPDATED_PARQUET_PATH])
        result = subprocess.run(["git", "diff", "--cached", "--quiet"])
        if result.returncode != 0:
            subprocess.run(["git", "commit", "-m", "Auto-update parquet file"])
            subprocess.run(["git", "push", "origin", "main"])
            print("โœ… Pushed parquet to repo")
        else:
            print("โ„น๏ธ No parquet changes to push")
    except Exception as e:
        print("โš ๏ธ Push failed:", e)

def auto_push_loop(interval=300):
    """Run save_and_push every `interval` seconds (default 5 min)."""
    while True:
        save_and_push()
        time.sleep(interval)

# --- Gradio app functions ---
def get_page(page_num, col, search_text, search_dropdown):
    global df
    filtered = df

    if col and col in df.columns:
        if col in DROPDOWN_COLUMNS and search_dropdown:
            filtered = filtered.filter(pl.col(col) == search_dropdown)
        elif search_text:
            filtered = filtered.filter(pl.col(col).cast(str).str.contains(search_text, literal=False))

    total_pages = (len(filtered) + ROWS_PER_PAGE - 1) // ROWS_PER_PAGE
    start, end = (page_num - 1) * ROWS_PER_PAGE, page_num * ROWS_PER_PAGE
    page_df = filtered[start:end]
    return page_df.to_pandas(), f"of {total_pages}", page_num, "", "", ""

def save_changes(dataset_id, assigned_to, status):
    global df
    mask = df["dataset_id"] == dataset_id
    if mask.any():
        df = df.with_columns([
            pl.when(mask).then(assigned_to).otherwise(df["assigned_to"]).alias("assigned_to"),
            pl.when(mask).then(status).otherwise(df["status"]).alias("status")
        ])
        df.write_parquet(UPDATED_PARQUET_PATH)
        save_and_push()  # push immediately after change
    return f"Saved for {dataset_id} โœ…"

def refresh_all(page_num, col, search_text, search_dropdown):
    return get_page(page_num, col, search_text, search_dropdown)

# --- UI ---
DROPDOWN_COLUMNS = ["status", "assigned_to"]

with gr.Blocks() as demo:
    with gr.Row():
        col_dropdown = gr.Dropdown(choices=columns, label="Search Column")
        search_text = gr.Textbox(label="Search Text")
        search_dropdown = gr.Dropdown(choices=["todo", "inprogress", "PR submitted", "PR merged"], label="Status")

    with gr.Row():
        page_number = gr.Number(value=1, precision=0, label="Page #")
        total_pages_display = gr.Textbox(value=f"of {total_pages}", interactive=False)

    data_table = gr.Dataframe(headers=columns, datatype=["str"] * len(columns), row_count=ROWS_PER_PAGE)

    selected_dataset_id = gr.Textbox(label="Selected Dataset ID", interactive=False)
    assigned_to_input = gr.Textbox(label="Assigned To")
    status_input = gr.Dropdown(choices=["todo", "inprogress", "PR submitted", "PR merged"], label="Status")

    save_btn = gr.Button("Save Changes")
    refresh_btn = gr.Button("Refresh")

    output_msg = gr.Textbox(label="Message", interactive=False)

    page_number.change(get_page, inputs=[page_number, col_dropdown, search_text, search_dropdown],
                       outputs=[data_table, total_pages_display, page_number,
                                selected_dataset_id, assigned_to_input, status_input])
    save_btn.click(save_changes, inputs=[selected_dataset_id, assigned_to_input, status_input], outputs=[output_msg])
    refresh_btn.click(refresh_all, inputs=[page_number, col_dropdown, search_text, search_dropdown],
                      outputs=[data_table, total_pages_display, page_number,
                               selected_dataset_id, assigned_to_input, status_input])

# ๐Ÿ”„ Start auto-push loop
threading.Thread(target=auto_push_loop, args=(300,), daemon=True).start()

demo.launch()