Santosh
commited on
Commit
·
616d667
1
Parent(s):
2ccb279
fixed things
Browse files- app.py +372 -87
- datasetcards_new.parquet +3 -0
app.py
CHANGED
@@ -1,46 +1,46 @@
|
|
1 |
# import gradio as gr
|
2 |
# import polars as pl
|
3 |
|
4 |
-
# #
|
5 |
-
#
|
6 |
-
# MISSING_PARQUET_PATH = "all_minimal_dataset_cards.parquet"
|
7 |
|
8 |
# ROWS_PER_PAGE = 50
|
9 |
|
10 |
-
# # Lazy load
|
11 |
-
#
|
12 |
-
#
|
13 |
-
|
14 |
-
#
|
|
|
15 |
|
16 |
# # Helper function to fetch a page
|
17 |
# def get_page(lazy_df: pl.LazyFrame, page: int, column: str = None, query: str = ""):
|
18 |
# filtered_df = lazy_df
|
19 |
# if column and query:
|
20 |
# query_lower = query.lower().strip()
|
21 |
-
# # Case-insensitive search
|
22 |
# filtered_df = filtered_df.with_columns([
|
23 |
# pl.col(column).cast(pl.Utf8).str.to_lowercase().alias(column)
|
24 |
# ]).filter(pl.col(column).str.contains(query_lower, literal=False))
|
25 |
# start = page * ROWS_PER_PAGE
|
26 |
# page_df = filtered_df.slice(start, ROWS_PER_PAGE).collect().to_pandas()
|
|
|
|
|
|
|
|
|
27 |
# total_rows = filtered_df.collect().height
|
28 |
# total_pages = (total_rows - 1) // ROWS_PER_PAGE + 1
|
29 |
# return page_df, total_pages
|
30 |
|
|
|
31 |
# # Initialize first page
|
32 |
-
# initial_df, total_pages = get_page(
|
33 |
# columns = list(initial_df.columns)
|
34 |
|
35 |
# with gr.Blocks() as demo:
|
36 |
# gr.Markdown("## Dataset Insight Portal")
|
37 |
-
|
38 |
-
#
|
39 |
-
#
|
40 |
-
# choices=["DatasetCards rich in information", "DatasetCards missing information"],
|
41 |
-
# value="DatasetCards missing information",
|
42 |
-
# label="Select Dataset"
|
43 |
-
# )
|
44 |
|
45 |
# # Pagination controls
|
46 |
# with gr.Row():
|
@@ -63,17 +63,7 @@
|
|
63 |
# reset_btn = gr.Button("Reset", elem_id="small-btn")
|
64 |
|
65 |
# # --- Functions ---
|
66 |
-
#
|
67 |
-
# global current_lazy_df
|
68 |
-
# current_lazy_df = lazy_rich if dataset_choice == "DatasetCards rich in information" else lazy_missing
|
69 |
-
# initial_df, total_pages = get_page(current_lazy_df, 0)
|
70 |
-
# columns = list(initial_df.columns)
|
71 |
-
# return (
|
72 |
-
# gr.update(value=initial_df, headers=columns),
|
73 |
-
# f"Total Pages: {total_pages}",
|
74 |
-
# 0,
|
75 |
-
# gr.update(choices=columns, value=columns[0])
|
76 |
-
# )
|
77 |
|
78 |
# def next_page_func(page, column, query):
|
79 |
# page += 1
|
@@ -98,7 +88,6 @@
|
|
98 |
# return page_df, f"Total Pages: {total_pages}", 0
|
99 |
|
100 |
# # --- Event Listeners ---
|
101 |
-
# dataset_select.change(load_dataset, dataset_select, [data_table, total_pages_display, page_number, col_dropdown])
|
102 |
# next_btn.click(next_page_func, [page_number, col_dropdown, search_text], [data_table, total_pages_display, page_number])
|
103 |
# prev_btn.click(prev_page_func, [page_number, col_dropdown, search_text], [data_table, total_pages_display, page_number])
|
104 |
# search_btn.click(search_func, [col_dropdown, search_text], [data_table, total_pages_display, page_number])
|
@@ -107,90 +96,386 @@
|
|
107 |
# demo.launch()
|
108 |
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
import gradio as gr
|
111 |
import polars as pl
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
|
114 |
-
|
|
|
115 |
|
116 |
-
|
117 |
|
118 |
-
#
|
119 |
-
|
|
|
|
|
120 |
|
121 |
-
#
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
if column and query:
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
130 |
start = page * ROWS_PER_PAGE
|
131 |
-
page_df = filtered_df
|
132 |
-
total_rows = filtered_df.
|
133 |
-
total_pages = (total_rows - 1) // ROWS_PER_PAGE + 1
|
134 |
return page_df, total_pages
|
135 |
|
136 |
-
|
137 |
-
initial_df, total_pages = get_page(lazy_df, 0)
|
138 |
columns = list(initial_df.columns)
|
139 |
|
140 |
with gr.Blocks() as demo:
|
141 |
-
gr.Markdown("
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
with gr.Row():
|
147 |
-
prev_btn = gr.Button("Previous"
|
148 |
-
next_btn = gr.Button("Next"
|
149 |
page_number = gr.Number(value=0, label="Page", precision=0)
|
150 |
total_pages_display = gr.Label(value=f"Total Pages: {total_pages}")
|
151 |
|
152 |
-
# Data table
|
153 |
data_table = gr.Dataframe(
|
154 |
-
value=initial_df,
|
155 |
-
|
|
|
|
|
|
|
156 |
)
|
157 |
|
158 |
-
#
|
159 |
with gr.Row():
|
160 |
-
col_dropdown = gr.Dropdown(choices=columns, label="Column")
|
161 |
-
search_text = gr.Textbox(label="Search")
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
page += 1
|
170 |
-
|
|
|
171 |
if page >= total_pages:
|
172 |
page = total_pages - 1
|
173 |
-
page_df, total_pages = get_page(
|
174 |
-
return page_df, f"Total Pages: {total_pages}", page
|
175 |
|
176 |
-
def
|
177 |
-
page
|
178 |
-
|
179 |
-
page_df, total_pages = get_page(
|
180 |
-
return page_df, f"Total Pages: {total_pages}", page
|
181 |
-
|
182 |
-
def search_func(column, query):
|
183 |
-
page_df, total_pages = get_page(current_lazy_df, 0, column, query)
|
184 |
-
return page_df, f"Total Pages: {total_pages}", 0
|
185 |
|
186 |
def reset_func():
|
187 |
-
page_df, total_pages = get_page(
|
188 |
-
return page_df, f"Total Pages: {total_pages}", 0
|
189 |
-
|
190 |
-
# ---
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
demo.launch()
|
|
|
1 |
# import gradio as gr
|
2 |
# import polars as pl
|
3 |
|
4 |
+
# # Path for the combined Parquet file
|
5 |
+
# COMBINED_PARQUET_PATH = "datasetcards.parquet"
|
|
|
6 |
|
7 |
# ROWS_PER_PAGE = 50
|
8 |
|
9 |
+
# # Lazy load dataset
|
10 |
+
# lazy_df = pl.scan_parquet(COMBINED_PARQUET_PATH)
|
11 |
+
# lazy_df = lazy_df.sort(
|
12 |
+
# by=["downloads", "last_modified"],
|
13 |
+
# descending=[True, True]
|
14 |
+
# )
|
15 |
|
16 |
# # Helper function to fetch a page
|
17 |
# def get_page(lazy_df: pl.LazyFrame, page: int, column: str = None, query: str = ""):
|
18 |
# filtered_df = lazy_df
|
19 |
# if column and query:
|
20 |
# query_lower = query.lower().strip()
|
|
|
21 |
# filtered_df = filtered_df.with_columns([
|
22 |
# pl.col(column).cast(pl.Utf8).str.to_lowercase().alias(column)
|
23 |
# ]).filter(pl.col(column).str.contains(query_lower, literal=False))
|
24 |
# start = page * ROWS_PER_PAGE
|
25 |
# page_df = filtered_df.slice(start, ROWS_PER_PAGE).collect().to_pandas()
|
26 |
+
|
27 |
+
# # Replace NaN/None with empty string for display
|
28 |
+
# page_df = page_df.fillna("")
|
29 |
+
|
30 |
# total_rows = filtered_df.collect().height
|
31 |
# total_pages = (total_rows - 1) // ROWS_PER_PAGE + 1
|
32 |
# return page_df, total_pages
|
33 |
|
34 |
+
|
35 |
# # Initialize first page
|
36 |
+
# initial_df, total_pages = get_page(lazy_df, 0)
|
37 |
# columns = list(initial_df.columns)
|
38 |
|
39 |
# with gr.Blocks() as demo:
|
40 |
# gr.Markdown("## Dataset Insight Portal")
|
41 |
+
# gr.Markdown("This space allows you to explore the dataset of DatasetCards.<br>"
|
42 |
+
# "You can navigate pages, search within columns, and inspect the dataset easily.<br>"
|
43 |
+
# )
|
|
|
|
|
|
|
|
|
44 |
|
45 |
# # Pagination controls
|
46 |
# with gr.Row():
|
|
|
63 |
# reset_btn = gr.Button("Reset", elem_id="small-btn")
|
64 |
|
65 |
# # --- Functions ---
|
66 |
+
# current_lazy_df = lazy_df # single dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
# def next_page_func(page, column, query):
|
69 |
# page += 1
|
|
|
88 |
# return page_df, f"Total Pages: {total_pages}", 0
|
89 |
|
90 |
# # --- Event Listeners ---
|
|
|
91 |
# next_btn.click(next_page_func, [page_number, col_dropdown, search_text], [data_table, total_pages_display, page_number])
|
92 |
# prev_btn.click(prev_page_func, [page_number, col_dropdown, search_text], [data_table, total_pages_display, page_number])
|
93 |
# search_btn.click(search_func, [col_dropdown, search_text], [data_table, total_pages_display, page_number])
|
|
|
96 |
# demo.launch()
|
97 |
|
98 |
|
99 |
+
# import gradio as gr
|
100 |
+
# import polars as pl
|
101 |
+
|
102 |
+
# COMBINED_PARQUET_PATH = "datasetcards.parquet"
|
103 |
+
# ROWS_PER_PAGE = 50
|
104 |
+
|
105 |
+
# # Load dataset
|
106 |
+
# df = pl.read_parquet(COMBINED_PARQUET_PATH) # eager DataFrame
|
107 |
+
|
108 |
+
# # Columns with dropdown instead of text search
|
109 |
+
# DROPDOWN_COLUMNS = ["reason", "category", "field", "keyword"]
|
110 |
+
|
111 |
+
# # Get unique values for the dropdown columns
|
112 |
+
# unique_values = {
|
113 |
+
# col: sorted(df[col].drop_nulls().unique().to_list()) for col in DROPDOWN_COLUMNS
|
114 |
+
# }
|
115 |
+
|
116 |
+
# # Get page helper
|
117 |
+
# def get_page(df, page, column, query):
|
118 |
+
# filtered_df = df
|
119 |
+
|
120 |
+
# if column and query:
|
121 |
+
# if column in DROPDOWN_COLUMNS:
|
122 |
+
# # Exact match from dropdown
|
123 |
+
# filtered_df = filtered_df.filter(pl.col(column) == query)
|
124 |
+
# else:
|
125 |
+
# # Text search
|
126 |
+
# q = query.lower().strip()
|
127 |
+
# filtered_df = (
|
128 |
+
# filtered_df.with_columns([
|
129 |
+
# pl.col(column).str.to_lowercase().alias(column)
|
130 |
+
# ])
|
131 |
+
# .filter(pl.col(column).str.contains(q, literal=False))
|
132 |
+
# )
|
133 |
+
|
134 |
+
# start = page * ROWS_PER_PAGE
|
135 |
+
# page_df = filtered_df[start:start + ROWS_PER_PAGE].to_pandas().fillna("")
|
136 |
+
# total_rows = filtered_df.height
|
137 |
+
# total_pages = (total_rows - 1) // ROWS_PER_PAGE + 1 if total_rows > 0 else 1
|
138 |
+
|
139 |
+
# return page_df, total_pages
|
140 |
+
|
141 |
+
|
142 |
+
# # Initial page
|
143 |
+
# initial_df, total_pages = get_page(df, 0, None, "")
|
144 |
+
# columns = list(initial_df.columns)
|
145 |
+
|
146 |
+
# # Build Gradio app
|
147 |
+
# with gr.Blocks() as demo:
|
148 |
+
# gr.Markdown("## Dataset Insight Portal")
|
149 |
+
# gr.Markdown(
|
150 |
+
# "This space allows you to explore the dataset of DatasetCards.<br>"
|
151 |
+
# "You can navigate pages, search within columns, and inspect the dataset easily.<br>"
|
152 |
+
# )
|
153 |
+
|
154 |
+
# with gr.Row():
|
155 |
+
# prev_btn = gr.Button("Previous")
|
156 |
+
# next_btn = gr.Button("Next")
|
157 |
+
# page_number = gr.Number(value=0, label="Page", precision=0)
|
158 |
+
# total_pages_display = gr.Label(value=f"Total Pages: {total_pages}")
|
159 |
+
|
160 |
+
# data_table = gr.Dataframe(
|
161 |
+
# value=initial_df,
|
162 |
+
# headers=columns,
|
163 |
+
# datatype="str",
|
164 |
+
# interactive=False,
|
165 |
+
# row_count=ROWS_PER_PAGE,
|
166 |
+
# )
|
167 |
+
|
168 |
+
# with gr.Row():
|
169 |
+
# col_dropdown = gr.Dropdown(choices=columns, label="Column to Search")
|
170 |
+
# search_text = gr.Textbox(label="Search Text")
|
171 |
+
# search_dropdown = gr.Dropdown(choices=[], label="Select Value", visible=False)
|
172 |
+
# search_btn = gr.Button("Search")
|
173 |
+
# reset_btn = gr.Button("Reset")
|
174 |
+
|
175 |
+
# # Show dropdown only for certain columns
|
176 |
+
# def update_search_input(column):
|
177 |
+
# if column in DROPDOWN_COLUMNS:
|
178 |
+
# return gr.update(choices=unique_values[column], visible=True), gr.update(visible=False)
|
179 |
+
# else:
|
180 |
+
# return gr.update(visible=False), gr.update(visible=True)
|
181 |
+
|
182 |
+
# col_dropdown.change(update_search_input, col_dropdown, [search_dropdown, search_text])
|
183 |
+
|
184 |
+
# # Search function
|
185 |
+
# def search_func(page, column, txt, ddl):
|
186 |
+
# query = ddl if column in DROPDOWN_COLUMNS else txt
|
187 |
+
# page_df, total_pages = get_page(df, page, column, query)
|
188 |
+
# return page_df, f"Total Pages: {total_pages}", 0
|
189 |
+
|
190 |
+
# def next_page(page, column, txt, ddl):
|
191 |
+
# page += 1
|
192 |
+
# query = ddl if column in DROPDOWN_COLUMNS else txt
|
193 |
+
# page_df, total_pages = get_page(df, page, column, query)
|
194 |
+
# if page >= total_pages:
|
195 |
+
# page = total_pages - 1
|
196 |
+
# page_df, total_pages = get_page(df, page, column, query)
|
197 |
+
# return page_df, f"Total Pages: {total_pages}", page
|
198 |
+
|
199 |
+
# def prev_page(page, column, txt, ddl):
|
200 |
+
# page = max(0, page - 1)
|
201 |
+
# query = ddl if column in DROPDOWN_COLUMNS else txt
|
202 |
+
# page_df, total_pages = get_page(df, page, column, query)
|
203 |
+
# return page_df, f"Total Pages: {total_pages}", page
|
204 |
+
|
205 |
+
# def reset_func():
|
206 |
+
# page_df, total_pages = get_page(df, 0, None, "")
|
207 |
+
# return page_df, f"Total Pages: {total_pages}", 0, "", ""
|
208 |
+
|
209 |
+
# # Wire events
|
210 |
+
# inputs = [page_number, col_dropdown, search_text, search_dropdown]
|
211 |
+
# outputs = [data_table, total_pages_display, page_number]
|
212 |
+
|
213 |
+
# search_btn.click(search_func, inputs, outputs)
|
214 |
+
# next_btn.click(next_page, inputs, outputs)
|
215 |
+
# prev_btn.click(prev_page, inputs, outputs)
|
216 |
+
# reset_btn.click(reset_func, [], outputs + [search_text, search_dropdown])
|
217 |
+
|
218 |
+
# demo.launch()
|
219 |
+
|
220 |
import gradio as gr
|
221 |
import polars as pl
|
222 |
+
from huggingface_hub import HfApi
|
223 |
+
import re
|
224 |
+
# --- Hugging Face Org ---
|
225 |
+
org_name = "hugging-science"
|
226 |
+
api = HfApi()
|
227 |
|
228 |
+
def fetch_members():
|
229 |
+
members = api.list_organization_members(org_name)
|
230 |
+
return [member.username for member in members]
|
231 |
|
232 |
+
member_list = fetch_members()
|
233 |
|
234 |
+
# --- Dataset ---
|
235 |
+
COMBINED_PARQUET_PATH = "datasetcards_new.parquet"
|
236 |
+
UPDATED_PARQUET_PATH = "datasetcards_new.parquet"
|
237 |
+
ROWS_PER_PAGE = 50
|
238 |
|
239 |
+
# df = pl.read_parquet(COMBINED_PARQUET_PATH)
|
240 |
+
df = pl.read_parquet(COMBINED_PARQUET_PATH)
|
241 |
+
df = df.with_columns([
|
242 |
+
pl.lit("todo").alias("status"),
|
243 |
+
pl.lit("").alias("assigned_to")
|
244 |
+
]).sort(by=["downloads", "last_modified", "usedStorage"], descending=[True, True, True])
|
245 |
+
|
246 |
+
if "reason" in df.columns:
|
247 |
+
df = df.with_columns([
|
248 |
+
pl.Series(
|
249 |
+
"reason",
|
250 |
+
["short description" if x and "short description" in x.lower() else (x if x is not None else "") for x in df["reason"]]
|
251 |
+
)
|
252 |
+
])
|
253 |
+
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
# Add editable columns if missing
|
258 |
+
for col in ["assigned_to", "status"]:
|
259 |
+
if col not in df.columns:
|
260 |
+
default_val = "" if col == "assigned_to" else "todo"
|
261 |
+
df = df.with_columns(pl.lit(default_val).alias(col))
|
262 |
+
else:
|
263 |
+
# Fill nulls with default
|
264 |
+
default_val = "" if col == "assigned_to" else "todo"
|
265 |
+
df = df.with_columns(pl.col(col).fill_null(default_val))
|
266 |
+
|
267 |
+
# --- Columns ---
|
268 |
+
DROPDOWN_COLUMNS = ["reason", "category", "field", "keyword", "assigned_to", "status"]
|
269 |
+
STATUS_OPTIONS = ["todo", "inprogress", "PR submitted", "PR merged"]
|
270 |
+
|
271 |
+
# Prepare unique values for dropdown search
|
272 |
+
unique_values = {col: sorted(df[col].drop_nulls().unique().to_list()) for col in DROPDOWN_COLUMNS}
|
273 |
+
unique_values['assigned_to'] = sorted(member_list)
|
274 |
+
unique_values['status'] = STATUS_OPTIONS
|
275 |
+
|
276 |
+
# --- Helper to get page ---
|
277 |
+
def get_page(df, page, column=None, query=None):
|
278 |
+
filtered_df = df
|
279 |
if column and query:
|
280 |
+
if column in DROPDOWN_COLUMNS:
|
281 |
+
filtered_df = filtered_df.filter(pl.col(column) == query)
|
282 |
+
else:
|
283 |
+
q = query.lower().strip()
|
284 |
+
filtered_df = (
|
285 |
+
filtered_df.with_columns([pl.col(column).str.to_lowercase().alias(column)])
|
286 |
+
.filter(pl.col(column).str.contains(q, literal=False))
|
287 |
+
)
|
288 |
start = page * ROWS_PER_PAGE
|
289 |
+
page_df = filtered_df[start:start + ROWS_PER_PAGE].to_pandas().fillna("")
|
290 |
+
total_rows = filtered_df.height
|
291 |
+
total_pages = (total_rows - 1) // ROWS_PER_PAGE + 1 if total_rows > 0 else 1
|
292 |
return page_df, total_pages
|
293 |
|
294 |
+
initial_df, total_pages = get_page(df, 0)
|
|
|
295 |
columns = list(initial_df.columns)
|
296 |
|
297 |
with gr.Blocks() as demo:
|
298 |
+
gr.Markdown("""
|
299 |
+
# Dataset Insight Portal
|
300 |
+
|
301 |
+
Welcome! This portal helps you explore and manage datasets from our Hugging Face organization.
|
302 |
+
|
303 |
+
## What is this space for?
|
304 |
+
This space provides a table of datasets along with metadata. You can:
|
305 |
+
- Browse datasets with pagination.
|
306 |
+
- Search datasets by various fields.
|
307 |
+
- Assign responsibility for reviewing datasets (`assigned_to`).
|
308 |
+
- Track progress using `status`.
|
309 |
+
|
310 |
+
## Why the table?
|
311 |
+
The table gives a structured view of all datasets, making it easy to sort, filter, and update information for each dataset.
|
312 |
+
|
313 |
+
## What does the table contain?
|
314 |
+
Each row represents a dataset. Columns include:
|
315 |
+
- **dataset_id**: Unique identifier of the dataset.
|
316 |
+
- **dataset_url**: Link to the dataset page on Hugging Face.
|
317 |
+
- **downloads**: Number of downloads.
|
318 |
+
- **author**: Dataset author.
|
319 |
+
- **license**: License type.
|
320 |
+
- **tags**: Tags describing the dataset. Obtained from the dataset card.
|
321 |
+
- **task_categories**: Categories of tasks the dataset is useful for. Obtained from the dataset card.
|
322 |
+
- **last_modified**: Date of last update.
|
323 |
+
- **field, keyword**: Metadata columns describing dataset purpose based on heuristics. Use the `field` and `keyword` to filter for science based datasets.
|
324 |
+
- **category**: Category of the dataset (`rich` means it is good dataset card. `minimal` means it needs improvement for the reasons below).
|
325 |
+
- **reason**: Reason why the dataset is classified as `minimal`. Options: `Failed to load card`, `No metadata and no description`, `No metadata and has description`, `Short description`.
|
326 |
+
- **usedStorage**: Storage used by the dataset (bytes).
|
327 |
+
- **assigned_to**: Person responsible for the dataset (editable).
|
328 |
+
- **status**: Progress status (editable). Options: `todo`, `inprogress`, `PR submitted`, `PR merged`.
|
329 |
+
|
330 |
+
## How to use search
|
331 |
+
- Select a **column** from the dropdown.
|
332 |
+
- If the column is textual, type your query in the text box.
|
333 |
+
- If the column is a dropdown (like `assigned_to` or `status`), select the value from the dropdown.
|
334 |
+
- Click **Search** to filter the table.
|
335 |
+
|
336 |
+
## How to add or update `assigned_to` and `status`
|
337 |
+
1. Search for the **dataset_id** initially.
|
338 |
+
2. Then, select the **dataset_id** from the dropdown below the table.
|
339 |
+
3. Choose the person responsible in **Assigned To**. If you are a member of the organization, your username should appear in the list. Else refresh and try again.
|
340 |
+
4. Select the current status in **Status**.
|
341 |
+
5. Click **Save Changes** to update the table and persist the changes.
|
342 |
+
6. Use **Refresh All** to reload the table and the latest members list.
|
343 |
+
|
344 |
+
This portal makes it easy to keep track of dataset reviews, assignments, and progress all in one place.
|
345 |
+
""")
|
346 |
+
|
347 |
+
# --- Pagination controls ---
|
348 |
with gr.Row():
|
349 |
+
prev_btn = gr.Button("Previous")
|
350 |
+
next_btn = gr.Button("Next")
|
351 |
page_number = gr.Number(value=0, label="Page", precision=0)
|
352 |
total_pages_display = gr.Label(value=f"Total Pages: {total_pages}")
|
353 |
|
354 |
+
# --- Data table ---
|
355 |
data_table = gr.Dataframe(
|
356 |
+
value=initial_df,
|
357 |
+
headers=columns,
|
358 |
+
datatype="str",
|
359 |
+
interactive=False,
|
360 |
+
row_count=ROWS_PER_PAGE
|
361 |
)
|
362 |
|
363 |
+
# --- Search controls ---
|
364 |
with gr.Row():
|
365 |
+
col_dropdown = gr.Dropdown(choices=columns, label="Column to Search")
|
366 |
+
search_text = gr.Textbox(label="Search Text")
|
367 |
+
search_dropdown = gr.Dropdown(choices=[], label="Select Value", visible=False)
|
368 |
+
search_btn = gr.Button("Search")
|
369 |
+
reset_btn = gr.Button("Reset")
|
370 |
+
|
371 |
+
# --- Dataset selection & editable fields ---
|
372 |
+
selected_dataset_id = gr.Dropdown(label="Select dataset_id", choices=initial_df['dataset_id'].tolist())
|
373 |
+
assigned_to_input = gr.Dropdown(choices=member_list, label="Assigned To")
|
374 |
+
# status_input = gr.Dropdown(choices=STATUS_OPTIONS, label="Status")
|
375 |
+
status_input = gr.Dropdown(choices=STATUS_OPTIONS, label="Status", value="todo")
|
376 |
+
|
377 |
+
|
378 |
+
save_btn = gr.Button("Save Changes")
|
379 |
+
refresh_btn = gr.Button("Refresh All")
|
380 |
+
save_message = gr.Textbox(label="Save Status", interactive=False)
|
381 |
+
|
382 |
+
# --- Update search input depending on column ---
|
383 |
+
def update_search_input(column):
|
384 |
+
if column in DROPDOWN_COLUMNS:
|
385 |
+
return gr.update(choices=unique_values[column], visible=True), gr.update(visible=False)
|
386 |
+
else:
|
387 |
+
return gr.update(visible=False), gr.update(visible=True)
|
388 |
+
|
389 |
+
col_dropdown.change(update_search_input, col_dropdown, [search_dropdown, search_text])
|
390 |
+
|
391 |
+
# --- Prefill editable fields ---
|
392 |
+
def prefill_fields(dataset_id):
|
393 |
+
if not dataset_id:
|
394 |
+
return "", "todo"
|
395 |
+
dataset_id = str(dataset_id)
|
396 |
+
filtered = [row for row in df.to_dicts() if str(row.get("dataset_id")) == dataset_id]
|
397 |
+
if not filtered:
|
398 |
+
return "", "todo"
|
399 |
+
row = filtered[0]
|
400 |
+
return row.get("assigned_to", ""), row.get("status", "todo")
|
401 |
+
|
402 |
+
selected_dataset_id.change(prefill_fields, selected_dataset_id, [assigned_to_input, status_input])
|
403 |
+
|
404 |
+
# --- Search function ---
|
405 |
+
def search_func(page, column, txt, ddl):
|
406 |
+
query = ddl if column in DROPDOWN_COLUMNS else txt
|
407 |
+
page_df, total_pages = get_page(df, page, column, query)
|
408 |
+
return page_df, f"Total Pages: {total_pages}", 0, gr.update(choices=page_df['dataset_id'].tolist())
|
409 |
+
|
410 |
+
# --- Pagination functions ---
|
411 |
+
def next_page(page, column, txt, ddl):
|
412 |
page += 1
|
413 |
+
query = ddl if column in DROPDOWN_COLUMNS else txt
|
414 |
+
page_df, total_pages = get_page(df, page, column, query)
|
415 |
if page >= total_pages:
|
416 |
page = total_pages - 1
|
417 |
+
page_df, total_pages = get_page(df, page, column, query)
|
418 |
+
return page_df, f"Total Pages: {total_pages}", page, gr.update(choices=page_df['dataset_id'].tolist())
|
419 |
|
420 |
+
def prev_page(page, column, txt, ddl):
|
421 |
+
page = max(0, page - 1)
|
422 |
+
query = ddl if column in DROPDOWN_COLUMNS else txt
|
423 |
+
page_df, total_pages = get_page(df, page, column, query)
|
424 |
+
return page_df, f"Total Pages: {total_pages}", page, gr.update(choices=page_df['dataset_id'].tolist())
|
|
|
|
|
|
|
|
|
425 |
|
426 |
def reset_func():
|
427 |
+
page_df, total_pages = get_page(df, 0)
|
428 |
+
return page_df, f"Total Pages: {total_pages}", 0, gr.update(choices=page_df['dataset_id'].tolist())
|
429 |
+
|
430 |
+
# --- Save changes & refresh ---
|
431 |
+
def save_changes(dataset_id, assigned_to_val, status_val, page_val, col, txt, ddl):
|
432 |
+
global df
|
433 |
+
if not dataset_id:
|
434 |
+
return gr.update(value="Please select a row first."), None, None, None
|
435 |
+
df = df.with_columns([
|
436 |
+
pl.when(pl.col("dataset_id") == dataset_id).then(pl.lit(assigned_to_val)).otherwise(pl.col("assigned_to")).alias("assigned_to"),
|
437 |
+
pl.when(pl.col("dataset_id") == dataset_id).then(pl.lit(status_val)).otherwise(pl.col("status")).alias("status")
|
438 |
+
])
|
439 |
+
df.write_parquet(UPDATED_PARQUET_PATH)
|
440 |
+
page_df, total_pages = get_page(df, page_val, col, txt if col not in DROPDOWN_COLUMNS else ddl)
|
441 |
+
return (
|
442 |
+
gr.update(value=f"Saved changes for dataset_id: {dataset_id}"),
|
443 |
+
page_df,
|
444 |
+
gr.update(choices=page_df['dataset_id'].tolist()),
|
445 |
+
f"Total Pages: {total_pages}"
|
446 |
+
)
|
447 |
+
|
448 |
+
# --- Refresh All: table + members ---
|
449 |
+
def refresh_all(page, column, txt, ddl):
|
450 |
+
global df, member_list, unique_values
|
451 |
+
# Refresh members
|
452 |
+
member_list = fetch_members()
|
453 |
+
unique_values['assigned_to'] = sorted(member_list)
|
454 |
+
# Refresh table
|
455 |
+
try:
|
456 |
+
df = pl.read_parquet(UPDATED_PARQUET_PATH)
|
457 |
+
except FileNotFoundError:
|
458 |
+
pass
|
459 |
+
page_df, total_pages = get_page(df, page, column, txt if column not in DROPDOWN_COLUMNS else ddl)
|
460 |
+
return page_df, f"Total Pages: {total_pages}", page, gr.update(choices=page_df['dataset_id'].tolist()), gr.update(choices=member_list)
|
461 |
+
|
462 |
+
# --- Wire buttons ---
|
463 |
+
inputs_search = [page_number, col_dropdown, search_text, search_dropdown]
|
464 |
+
outputs_search = [data_table, total_pages_display, page_number, selected_dataset_id]
|
465 |
+
|
466 |
+
search_btn.click(search_func, inputs_search, outputs_search)
|
467 |
+
next_btn.click(next_page, inputs_search, outputs_search)
|
468 |
+
prev_btn.click(prev_page, inputs_search, outputs_search)
|
469 |
+
reset_btn.click(reset_func, [], outputs_search)
|
470 |
+
save_btn.click(
|
471 |
+
save_changes,
|
472 |
+
[selected_dataset_id, assigned_to_input, status_input, page_number, col_dropdown, search_text, search_dropdown],
|
473 |
+
[save_message, data_table, selected_dataset_id, total_pages_display]
|
474 |
+
)
|
475 |
+
refresh_btn.click(
|
476 |
+
refresh_all,
|
477 |
+
inputs=[page_number, col_dropdown, search_text, search_dropdown],
|
478 |
+
outputs=[data_table, total_pages_display, page_number, selected_dataset_id, assigned_to_input]
|
479 |
+
)
|
480 |
|
481 |
demo.launch()
|
datasetcards_new.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0d3770a3024eaf459d5c12d2c4a9d0d5a5043660d0a15c062a387595602eacf
|
3 |
+
size 38347730
|