Spaces:
Sleeping
Sleeping
import time | |
import gradio as gr | |
from openai import OpenAI | |
DESCRIPTION = ''' | |
# DeepSeek-R1 Distill Qwen-1.5 Demo | |
A reasoning model trained using RL (Reinforcement Learning) that demonstrates structured reasoning capabilities. | |
''' | |
CSS = """ | |
.spinner { | |
animation: spin 1s linear infinite; | |
display: inline-block; | |
margin-right: 8px; | |
} | |
@keyframes spin { | |
from { transform: rotate(0deg); } | |
to { transform: rotate(360deg); } | |
} | |
.thinking-summary { | |
cursor: pointer; | |
padding: 8px; | |
background: #f5f5f5; | |
border-radius: 4px; | |
margin: 4px 0; | |
} | |
.thought-content { | |
padding: 10px; | |
background: #f8f9fa; | |
border-radius: 4px; | |
margin: 5px 0; | |
} | |
.thinking-container { | |
border-left: 3px solid #e0e0e0; | |
padding-left: 10px; | |
margin: 8px 0; | |
} | |
details:not([open]) .thinking-container { | |
border-left-color: #4CAF50; | |
} | |
""" | |
client = OpenAI(base_url="http://localhost:8080/v1", api_key="no-key-required") | |
def user(message, history): | |
return "", history + [[message, None]] | |
class ParserState: | |
__slots__ = ['answer', 'thought', 'in_think', 'start_time', 'last_pos'] | |
def __init__(self): | |
self.answer = "" | |
self.thought = "" | |
self.in_think = False | |
self.start_time = 0 | |
self.last_pos = 0 | |
def parse_response(text, state): | |
buffer = text[state.last_pos:] | |
state.last_pos = len(text) | |
while buffer: | |
if not state.in_think: | |
think_start = buffer.find('<think>') | |
if think_start != -1: | |
state.answer += buffer[:think_start] | |
state.in_think = True | |
state.start_time = time.perf_counter() | |
buffer = buffer[think_start + 7:] | |
else: | |
state.answer += buffer | |
break | |
else: | |
think_end = buffer.find('</think>') | |
if think_end != -1: | |
state.thought += buffer[:think_end] | |
state.in_think = False | |
buffer = buffer[think_end + 8:] | |
else: | |
state.thought += buffer | |
break | |
elapsed = time.perf_counter() - state.start_time if state.in_think else 0 | |
return state, elapsed | |
def format_response(state, elapsed): | |
answer_part = state.answer.replace('<think>', '').replace('</think>', '') | |
collapsible = [] | |
if state.thought or state.in_think: | |
status = (f"🌀 Thinking for {elapsed:.0f} seconds" | |
if state.in_think else f"✅ Thought for {elapsed:.0f} seconds") | |
collapsible.append( | |
f"<details open><summary>{status}</summary>\n\n<div class='thinking-container'>\n{state.thought}\n</div>\n</details>" | |
) | |
return collapsible, answer_part | |
def generate_response(history, temperature, top_p, max_tokens, active_gen): | |
messages = [{"role": "user", "content": history[-1][0]}] | |
full_response = "" | |
state = ParserState() | |
last_update = 0 | |
try: | |
stream = client.chat.completions.create( | |
model="", | |
messages=messages, | |
temperature=temperature, | |
top_p=top_p, | |
max_tokens=max_tokens, | |
stream=True | |
) | |
for chunk in stream: | |
if not active_gen[0]: | |
break | |
if chunk.choices[0].delta.content: | |
full_response += chunk.choices[0].delta.content | |
state, elapsed = parse_response(full_response, state) | |
collapsible, answer_part = format_response(state, elapsed) | |
history[-1][1] = "\n\n".join(collapsible + [answer_part]) # Markdown-safe | |
yield history | |
# Final update | |
state, elapsed = parse_response(full_response, state) | |
collapsible, answer_part = format_response(state, elapsed) | |
history[-1][1] = "\n\n".join(collapsible + [answer_part]) # Markdown-safe | |
yield history | |
except Exception as e: | |
history[-1][1] = f"Error: {str(e)}" | |
yield history | |
finally: | |
active_gen[0] = False | |
with gr.Blocks(css=CSS) as demo: | |
gr.Markdown(DESCRIPTION) | |
active_gen = gr.State([False]) | |
chatbot = gr.Chatbot( | |
elem_id="chatbot", | |
height=500, | |
show_label=False, | |
render_markdown=True | |
) | |
with gr.Row(): | |
msg = gr.Textbox( | |
label="Message", | |
placeholder="Type your message...", | |
container=False, | |
scale=4 | |
) | |
submit_btn = gr.Button("Send", variant='primary', scale=1) | |
with gr.Column(scale=2): | |
with gr.Row(): | |
clear_btn = gr.Button("Clear", variant='secondary') | |
stop_btn = gr.Button("Stop", variant='stop') | |
with gr.Accordion("Parameters", open=False): | |
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, label="Temperature") | |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p") | |
max_tokens = gr.Slider(minimum=2048, maximum=32768, value=4096, step=64, label="Max Tokens") | |
gr.Examples( | |
examples=[ | |
["How many r's are in the word strawberry?"], | |
["Write 10 funny sentences that end in a fruit!"], | |
["Let's play Tic Tac Toe, I'll start and we'll take turns: Row 1: -|-|-\nRow 2: -|-|-\nRow 3: -|-|-\nYour Turn!"] | |
], | |
inputs=msg, | |
label="Example Prompts" | |
) | |
submit_event = submit_btn.click( | |
user, [msg, chatbot], [msg, chatbot], queue=False | |
).then( | |
lambda: [True], outputs=active_gen | |
).then( | |
generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot | |
) | |
msg.submit( | |
user, [msg, chatbot], [msg, chatbot], queue=False | |
).then( | |
lambda: [True], outputs=active_gen | |
).then( | |
generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot | |
) | |
stop_btn.click( | |
lambda: [False], None, active_gen, cancels=[submit_event] | |
) | |
clear_btn.click(lambda: None, None, chatbot, queue=False) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860) |