File size: 6,410 Bytes
5b7d78e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import time
import gradio as gr
from openai import OpenAI

DESCRIPTION = '''

# DeepSeek-R1 Distill Qwen-1.5 Demo

A reasoning model trained using RL (Reinforcement Learning) that demonstrates structured reasoning capabilities.

'''

CSS = """

.spinner {

    animation: spin 1s linear infinite;

    display: inline-block;

    margin-right: 8px;

}

@keyframes spin {

    from { transform: rotate(0deg); }

    to { transform: rotate(360deg); }

}

.thinking-summary {

    cursor: pointer;

    padding: 8px;

    background: #f5f5f5;

    border-radius: 4px;

    margin: 4px 0;

}

.thought-content {

    padding: 10px;

    background: #f8f9fa;

    border-radius: 4px;

    margin: 5px 0;

}

.thinking-container {

    border-left: 3px solid #e0e0e0;

    padding-left: 10px;

    margin: 8px 0;

}

details:not([open]) .thinking-container {

    border-left-color: #4CAF50;

}

"""

client = OpenAI(base_url="http://localhost:8080/v1", api_key="no-key-required")

def user(message, history):
    return "", history + [[message, None]]

class ParserState:
    __slots__ = ['answer', 'thought', 'in_think', 'start_time', 'last_pos']
    def __init__(self):
        self.answer = ""
        self.thought = ""
        self.in_think = False
        self.start_time = 0
        self.last_pos = 0

def parse_response(text, state):
    buffer = text[state.last_pos:]
    state.last_pos = len(text)
    
    while buffer:
        if not state.in_think:
            think_start = buffer.find('<think>')
            if think_start != -1:
                state.answer += buffer[:think_start]
                state.in_think = True
                state.start_time = time.perf_counter()
                buffer = buffer[think_start + 7:]
            else:
                state.answer += buffer
                break
        else:
            think_end = buffer.find('</think>')
            if think_end != -1:
                state.thought += buffer[:think_end]
                state.in_think = False
                buffer = buffer[think_end + 8:]
            else:
                state.thought += buffer
                break
    
    elapsed = time.perf_counter() - state.start_time if state.in_think else 0
    return state, elapsed

def format_response(state, elapsed):
    answer_part = state.answer.replace('<think>', '').replace('</think>', '')
    collapsible = []

    if state.thought or state.in_think:
        status = (f"🌀 Thinking for {elapsed:.0f} seconds" 
                  if state.in_think else f"✅ Thought for {elapsed:.0f} seconds")
        collapsible.append(
            f"<details open><summary>{status}</summary>\n\n<div class='thinking-container'>\n{state.thought}\n</div>\n</details>"
        )

    return collapsible, answer_part

def generate_response(history, temperature, top_p, max_tokens, active_gen):
    messages = [{"role": "user", "content": history[-1][0]}]
    full_response = ""
    state = ParserState()
    last_update = 0
    
    try:
        stream = client.chat.completions.create(
            model="",
            messages=messages,
            temperature=temperature,
            top_p=top_p,
            max_tokens=max_tokens,
            stream=True
        )
        
        for chunk in stream:
            if not active_gen[0]:
                break
            
            if chunk.choices[0].delta.content:
                full_response += chunk.choices[0].delta.content
                state, elapsed = parse_response(full_response, state)
                
                collapsible, answer_part = format_response(state, elapsed)
                history[-1][1] = "\n\n".join(collapsible + [answer_part])  # Markdown-safe
                yield history
        
        # Final update
        state, elapsed = parse_response(full_response, state)
        collapsible, answer_part = format_response(state, elapsed)
        history[-1][1] = "\n\n".join(collapsible + [answer_part])  # Markdown-safe
        yield history
        
    except Exception as e:
        history[-1][1] = f"Error: {str(e)}"
        yield history
    finally:
        active_gen[0] = False

with gr.Blocks(css=CSS) as demo:
    gr.Markdown(DESCRIPTION)
    active_gen = gr.State([False])
    
    chatbot = gr.Chatbot(
        elem_id="chatbot",
        height=500,
        show_label=False,
        render_markdown=True
    )

    with gr.Row():
        msg = gr.Textbox(
            label="Message",
            placeholder="Type your message...",
            container=False,
            scale=4
        )
        submit_btn = gr.Button("Send", variant='primary', scale=1)
    
    with gr.Column(scale=2):
        with gr.Row():
            clear_btn = gr.Button("Clear", variant='secondary')
            stop_btn = gr.Button("Stop", variant='stop')
        
        with gr.Accordion("Parameters", open=False):
            temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, label="Temperature")
            top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p")
            max_tokens = gr.Slider(minimum=2048, maximum=32768, value=4096, step=64, label="Max Tokens")

    gr.Examples(
        examples=[
            ["How many r's are in the word strawberry?"],
            ["Write 10 funny sentences that end in a fruit!"],
            ["Let's play Tic Tac Toe, I'll start and we'll take turns: Row 1: -|-|-\nRow 2: -|-|-\nRow 3: -|-|-\nYour Turn!"]
        ],
        inputs=msg,
        label="Example Prompts"
    )
    
    submit_event = submit_btn.click(
        user, [msg, chatbot], [msg, chatbot], queue=False
    ).then(
        lambda: [True], outputs=active_gen
    ).then(
        generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot
    )
    
    msg.submit(
        user, [msg, chatbot], [msg, chatbot], queue=False
    ).then(
        lambda: [True], outputs=active_gen
    ).then(
        generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot
    )
    
    stop_btn.click(
        lambda: [False], None, active_gen, cancels=[submit_event]
    )
    
    clear_btn.click(lambda: None, None, chatbot, queue=False)

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)