Spaces:
Sleeping
Sleeping
remove fallback model completely, and uncomment
Browse files
app.py
CHANGED
|
@@ -78,21 +78,9 @@ MODEL_CONFIG = {
|
|
| 78 |
"description": "Lightweight T5 model optimized for instruction following",
|
| 79 |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 80 |
"is_t5": True
|
| 81 |
-
},
|
| 82 |
-
"Fallback Model": {
|
| 83 |
-
"name": "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
|
| 84 |
-
"description": "Model sangat ringan untuk fallback",
|
| 85 |
-
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
|
| 86 |
}
|
| 87 |
}
|
| 88 |
|
| 89 |
-
# Tambahkan model fallback ke MODEL_CONFIG
|
| 90 |
-
# MODEL_CONFIG["Fallback Model"] = {
|
| 91 |
-
# "name": "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
|
| 92 |
-
# "description": "Model sangat ringan untuk fallback",
|
| 93 |
-
# "dtype": torch.float16 if torch.cuda.is_available() else torch.float32
|
| 94 |
-
# }
|
| 95 |
-
|
| 96 |
def initialize_model_once(model_key):
|
| 97 |
with MODEL_CACHE["init_lock"]:
|
| 98 |
current_model = MODEL_CACHE["model_name"]
|
|
@@ -160,35 +148,21 @@ def initialize_model_once(model_key):
|
|
| 160 |
|
| 161 |
# Handle standard HF models
|
| 162 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
)
|
| 173 |
-
|
| 174 |
-
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
|
| 175 |
-
model_name,
|
| 176 |
-
quantization_config=quantization_config,
|
| 177 |
-
torch_dtype=model_info["dtype"],
|
| 178 |
-
device_map="auto",
|
| 179 |
-
low_cpu_mem_usage=True,
|
| 180 |
-
trust_remote_code=True
|
| 181 |
-
)
|
| 182 |
-
else:
|
| 183 |
-
# For CPU-only environments, load without quantization
|
| 184 |
-
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
|
| 185 |
-
model_name,
|
| 186 |
-
torch_dtype=torch.float32, # Use float32 for CPU
|
| 187 |
-
device_map=None,
|
| 188 |
-
low_cpu_mem_usage=True,
|
| 189 |
-
trust_remote_code=True
|
| 190 |
-
)
|
| 191 |
-
|
| 192 |
MODEL_CACHE["is_gguf"] = False
|
| 193 |
|
| 194 |
print(f"Model {model_name} loaded successfully")
|
|
@@ -206,9 +180,6 @@ def create_llm_pipeline(model_key):
|
|
| 206 |
print(f"Creating pipeline for model: {model_key}")
|
| 207 |
tokenizer, model, is_gguf = initialize_model_once(model_key)
|
| 208 |
|
| 209 |
-
# Get the model info for reference
|
| 210 |
-
model_info = MODEL_CONFIG[model_key]
|
| 211 |
-
|
| 212 |
if model is None:
|
| 213 |
raise ValueError(f"Model is None for {model_key}")
|
| 214 |
|
|
@@ -258,85 +229,22 @@ def create_llm_pipeline(model_key):
|
|
| 258 |
import traceback
|
| 259 |
print(f"Error creating pipeline: {str(e)}")
|
| 260 |
print(traceback.format_exc())
|
| 261 |
-
|
| 262 |
-
# Fallback ke model sederhana jika yang utama gagal
|
| 263 |
-
if model_key != "Fallback Model":
|
| 264 |
-
print(f"Trying fallback model")
|
| 265 |
-
try:
|
| 266 |
-
return create_fallback_pipeline()
|
| 267 |
-
except:
|
| 268 |
-
raise RuntimeError(f"Failed to create pipeline: {str(e)}")
|
| 269 |
-
else:
|
| 270 |
-
raise RuntimeError(f"Failed to create pipeline: {str(e)}")
|
| 271 |
-
|
| 272 |
-
def create_fallback_pipeline():
|
| 273 |
-
"""Create a fallback pipeline with a very small model"""
|
| 274 |
-
model_key = "Fallback Model"
|
| 275 |
-
print(f"Creating minimal fallback pipeline with {MODEL_CONFIG[model_key]['name']}")
|
| 276 |
-
|
| 277 |
-
# Avoid using bitsandbytes for quantization when CUDA is not available
|
| 278 |
-
try:
|
| 279 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_CONFIG[model_key]["name"])
|
| 280 |
-
|
| 281 |
-
# Load model in 8-bit or without quantization for CPU
|
| 282 |
-
if torch.cuda.is_available():
|
| 283 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 284 |
-
MODEL_CONFIG[model_key]["name"],
|
| 285 |
-
torch_dtype=MODEL_CONFIG[model_key]["dtype"],
|
| 286 |
-
device_map="auto",
|
| 287 |
-
low_cpu_mem_usage=True
|
| 288 |
-
)
|
| 289 |
-
else:
|
| 290 |
-
# For CPU-only environments, avoid quantization
|
| 291 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 292 |
-
MODEL_CONFIG[model_key]["name"],
|
| 293 |
-
torch_dtype=torch.float32, # Use float32 for CPU
|
| 294 |
-
low_cpu_mem_usage=True
|
| 295 |
-
)
|
| 296 |
-
|
| 297 |
-
pipe = pipeline(
|
| 298 |
-
"text-generation",
|
| 299 |
-
model=model,
|
| 300 |
-
tokenizer=tokenizer,
|
| 301 |
-
max_new_tokens=64, # Reduced for CPU performance
|
| 302 |
-
temperature=0.3,
|
| 303 |
-
return_full_text=False,
|
| 304 |
-
)
|
| 305 |
-
|
| 306 |
-
return HuggingFacePipeline(pipeline=pipe)
|
| 307 |
-
except Exception as e:
|
| 308 |
-
print(f"Error creating minimal fallback pipeline: {str(e)}")
|
| 309 |
-
raise
|
| 310 |
|
| 311 |
def handle_model_loading_error(model_key, session_id):
|
| 312 |
-
"""Handle model loading errors
|
| 313 |
-
|
| 314 |
"DeepSeek Coder Instruct", # 1.3B model
|
| 315 |
-
"Phi-4",
|
| 316 |
-
"TinyLlama
|
| 317 |
-
"Flan
|
| 318 |
]
|
| 319 |
|
| 320 |
-
#
|
| 321 |
-
if model_key
|
| 322 |
-
|
| 323 |
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
current_index = fallback_hierarchy.index(model_key)
|
| 327 |
-
except ValueError:
|
| 328 |
-
current_index = -1
|
| 329 |
-
|
| 330 |
-
# Coba model berikutnya dalam hirarki
|
| 331 |
-
for fallback_model in fallback_hierarchy[current_index+1:]:
|
| 332 |
-
try:
|
| 333 |
-
print(f"Trying fallback model: {fallback_model}")
|
| 334 |
-
chatbot = ChatBot(session_id, fallback_model)
|
| 335 |
-
return chatbot, f"Model {model_key} tidak tersedia. Menggunakan {fallback_model} sebagai alternatif."
|
| 336 |
-
except Exception as e:
|
| 337 |
-
print(f"Fallback model {fallback_model} also failed: {str(e)}")
|
| 338 |
-
|
| 339 |
-
return None, "Semua model gagal dimuat. Harap coba lagi nanti."
|
| 340 |
|
| 341 |
def create_conversational_chain(db, file_path, model_key):
|
| 342 |
llm = create_llm_pipeline(model_key)
|
|
@@ -703,18 +611,6 @@ def create_gradio_interface():
|
|
| 703 |
import traceback
|
| 704 |
print(f"Error processing file with {model_key}: {str(e)}")
|
| 705 |
print(traceback.format_exc())
|
| 706 |
-
|
| 707 |
-
# Coba dengan model fallback
|
| 708 |
-
try:
|
| 709 |
-
chatbot, message = handle_model_loading_error(model_key, sess_id)
|
| 710 |
-
if chatbot is not None:
|
| 711 |
-
result = chatbot.process_file(file)
|
| 712 |
-
return chatbot, True, [(None, message), (None, result)]
|
| 713 |
-
else:
|
| 714 |
-
return None, False, [(None, message)]
|
| 715 |
-
except Exception as fb_err:
|
| 716 |
-
error_msg = f"Error dengan model {model_key}: {str(e)}\n\nFallback juga gagal: {str(fb_err)}"
|
| 717 |
-
return None, False, [(None, error_msg)]
|
| 718 |
|
| 719 |
process_button.click(
|
| 720 |
fn=handle_process_file,
|
|
@@ -737,21 +633,6 @@ def create_gradio_interface():
|
|
| 737 |
outputs=[chatbot_state, model_selected, chatbot_interface, model_dropdown]
|
| 738 |
)
|
| 739 |
|
| 740 |
-
# Change model handler
|
| 741 |
-
# def handle_model_change(model_key, chatbot, sess_id):
|
| 742 |
-
# if chatbot is None:
|
| 743 |
-
# chatbot = ChatBot(sess_id, model_key)
|
| 744 |
-
# return chatbot, [(None, f"Model diatur ke {model_key}. Silakan upload file CSV.")]
|
| 745 |
-
|
| 746 |
-
# result = chatbot.change_model(model_key)
|
| 747 |
-
# return chatbot, chatbot.chat_history + [(None, result)]
|
| 748 |
-
|
| 749 |
-
# change_model_button.click(
|
| 750 |
-
# fn=handle_model_change,
|
| 751 |
-
# inputs=[model_dropdown, chatbot_state, session_id],
|
| 752 |
-
# outputs=[chatbot_state, chatbot_interface]
|
| 753 |
-
# )
|
| 754 |
-
|
| 755 |
# Chat handlers
|
| 756 |
def user_message_submitted(message, history, chatbot, sess_id):
|
| 757 |
history = history + [(message, None)]
|
|
|
|
| 78 |
"description": "Lightweight T5 model optimized for instruction following",
|
| 79 |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 80 |
"is_t5": True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
}
|
| 82 |
}
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
def initialize_model_once(model_key):
|
| 85 |
with MODEL_CACHE["init_lock"]:
|
| 86 |
current_model = MODEL_CACHE["model_name"]
|
|
|
|
| 148 |
|
| 149 |
# Handle standard HF models
|
| 150 |
else:
|
| 151 |
+
quantization_config = BitsAndBytesConfig(
|
| 152 |
+
load_in_4bit=True,
|
| 153 |
+
bnb_4bit_compute_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 154 |
+
bnb_4bit_quant_type="nf4",
|
| 155 |
+
bnb_4bit_use_double_quant=True
|
| 156 |
+
)
|
| 157 |
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 158 |
+
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
|
| 159 |
+
model_name,
|
| 160 |
+
quantization_config=quantization_config,
|
| 161 |
+
torch_dtype=model_info["dtype"],
|
| 162 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
| 163 |
+
low_cpu_mem_usage=True,
|
| 164 |
+
trust_remote_code=True
|
| 165 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
MODEL_CACHE["is_gguf"] = False
|
| 167 |
|
| 168 |
print(f"Model {model_name} loaded successfully")
|
|
|
|
| 180 |
print(f"Creating pipeline for model: {model_key}")
|
| 181 |
tokenizer, model, is_gguf = initialize_model_once(model_key)
|
| 182 |
|
|
|
|
|
|
|
|
|
|
| 183 |
if model is None:
|
| 184 |
raise ValueError(f"Model is None for {model_key}")
|
| 185 |
|
|
|
|
| 229 |
import traceback
|
| 230 |
print(f"Error creating pipeline: {str(e)}")
|
| 231 |
print(traceback.format_exc())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
|
| 233 |
def handle_model_loading_error(model_key, session_id):
|
| 234 |
+
"""Handle model loading errors by providing alternative model suggestions"""
|
| 235 |
+
suggested_models = [
|
| 236 |
"DeepSeek Coder Instruct", # 1.3B model
|
| 237 |
+
"Phi-4 Mini Instruct", # Light model
|
| 238 |
+
"TinyLlama Chat", # 1.1B model
|
| 239 |
+
"Flan T5 Small" # Lightweight T5
|
| 240 |
]
|
| 241 |
|
| 242 |
+
# Remove the current model from suggestions if it's in the list
|
| 243 |
+
if model_key in suggested_models:
|
| 244 |
+
suggested_models.remove(model_key)
|
| 245 |
|
| 246 |
+
suggestions = ", ".join(suggested_models[:3]) # Only show top 3 suggestions
|
| 247 |
+
return None, f"Tidak dapat memuat model {model_key}. Silakan coba model lain seperti: {suggestions}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
|
| 249 |
def create_conversational_chain(db, file_path, model_key):
|
| 250 |
llm = create_llm_pipeline(model_key)
|
|
|
|
| 611 |
import traceback
|
| 612 |
print(f"Error processing file with {model_key}: {str(e)}")
|
| 613 |
print(traceback.format_exc())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 614 |
|
| 615 |
process_button.click(
|
| 616 |
fn=handle_process_file,
|
|
|
|
| 633 |
outputs=[chatbot_state, model_selected, chatbot_interface, model_dropdown]
|
| 634 |
)
|
| 635 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 636 |
# Chat handlers
|
| 637 |
def user_message_submitted(message, history, chatbot, sess_id):
|
| 638 |
history = history + [(message, None)]
|