Spaces:
Sleeping
Sleeping
modify create_fallback_pipeline and initialize_model_once without CUDA
Browse files
app.py
CHANGED
|
@@ -160,21 +160,35 @@ def initialize_model_once(model_key):
|
|
| 160 |
|
| 161 |
# Handle standard HF models
|
| 162 |
else:
|
| 163 |
-
quantization_config = BitsAndBytesConfig(
|
| 164 |
-
load_in_4bit=True,
|
| 165 |
-
bnb_4bit_compute_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 166 |
-
bnb_4bit_quant_type="nf4",
|
| 167 |
-
bnb_4bit_use_double_quant=True
|
| 168 |
-
)
|
| 169 |
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
MODEL_CACHE["is_gguf"] = False
|
| 179 |
|
| 180 |
print(f"Model {model_name} loaded successfully")
|
|
@@ -258,24 +272,41 @@ def create_llm_pipeline(model_key):
|
|
| 258 |
def create_fallback_pipeline():
|
| 259 |
"""Create a fallback pipeline with a very small model"""
|
| 260 |
model_key = "Fallback Model"
|
| 261 |
-
|
| 262 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 263 |
-
MODEL_CONFIG[model_key]["name"],
|
| 264 |
-
torch_dtype=MODEL_CONFIG[model_key]["dtype"],
|
| 265 |
-
device_map="auto" if torch.cuda.is_available() else None,
|
| 266 |
-
low_cpu_mem_usage=True
|
| 267 |
-
)
|
| 268 |
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
|
| 280 |
def handle_model_loading_error(model_key, session_id):
|
| 281 |
"""Handle model loading errors with fallback options"""
|
|
|
|
| 160 |
|
| 161 |
# Handle standard HF models
|
| 162 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 164 |
+
|
| 165 |
+
# Only use quantization if CUDA is available
|
| 166 |
+
if torch.cuda.is_available():
|
| 167 |
+
quantization_config = BitsAndBytesConfig(
|
| 168 |
+
load_in_4bit=True,
|
| 169 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 170 |
+
bnb_4bit_quant_type="nf4",
|
| 171 |
+
bnb_4bit_use_double_quant=True
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
|
| 175 |
+
model_name,
|
| 176 |
+
quantization_config=quantization_config,
|
| 177 |
+
torch_dtype=model_info["dtype"],
|
| 178 |
+
device_map="auto",
|
| 179 |
+
low_cpu_mem_usage=True,
|
| 180 |
+
trust_remote_code=True
|
| 181 |
+
)
|
| 182 |
+
else:
|
| 183 |
+
# For CPU-only environments, load without quantization
|
| 184 |
+
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
|
| 185 |
+
model_name,
|
| 186 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
| 187 |
+
device_map=None,
|
| 188 |
+
low_cpu_mem_usage=True,
|
| 189 |
+
trust_remote_code=True
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
MODEL_CACHE["is_gguf"] = False
|
| 193 |
|
| 194 |
print(f"Model {model_name} loaded successfully")
|
|
|
|
| 272 |
def create_fallback_pipeline():
|
| 273 |
"""Create a fallback pipeline with a very small model"""
|
| 274 |
model_key = "Fallback Model"
|
| 275 |
+
print(f"Creating minimal fallback pipeline with {MODEL_CONFIG[model_key]['name']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
|
| 277 |
+
# Avoid using bitsandbytes for quantization when CUDA is not available
|
| 278 |
+
try:
|
| 279 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_CONFIG[model_key]["name"])
|
| 280 |
+
|
| 281 |
+
# Load model in 8-bit or without quantization for CPU
|
| 282 |
+
if torch.cuda.is_available():
|
| 283 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 284 |
+
MODEL_CONFIG[model_key]["name"],
|
| 285 |
+
torch_dtype=MODEL_CONFIG[model_key]["dtype"],
|
| 286 |
+
device_map="auto",
|
| 287 |
+
low_cpu_mem_usage=True
|
| 288 |
+
)
|
| 289 |
+
else:
|
| 290 |
+
# For CPU-only environments, avoid quantization
|
| 291 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 292 |
+
MODEL_CONFIG[model_key]["name"],
|
| 293 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
| 294 |
+
low_cpu_mem_usage=True
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
pipe = pipeline(
|
| 298 |
+
"text-generation",
|
| 299 |
+
model=model,
|
| 300 |
+
tokenizer=tokenizer,
|
| 301 |
+
max_new_tokens=64, # Reduced for CPU performance
|
| 302 |
+
temperature=0.3,
|
| 303 |
+
return_full_text=False,
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
return HuggingFacePipeline(pipeline=pipe)
|
| 307 |
+
except Exception as e:
|
| 308 |
+
print(f"Error creating minimal fallback pipeline: {str(e)}")
|
| 309 |
+
raise
|
| 310 |
|
| 311 |
def handle_model_loading_error(model_key, session_id):
|
| 312 |
"""Handle model loading errors with fallback options"""
|