Spaces:
Sleeping
Sleeping
add performance_tracker, pure llm w/o pandas bypass, full english
Browse files
app.py
CHANGED
|
@@ -30,6 +30,7 @@ MODEL_CACHE = {
|
|
| 30 |
|
| 31 |
# Create directories for user data
|
| 32 |
os.makedirs("user_data", exist_ok=True)
|
|
|
|
| 33 |
|
| 34 |
# Model configuration dictionary
|
| 35 |
MODEL_CONFIG = {
|
|
@@ -40,7 +41,7 @@ MODEL_CONFIG = {
|
|
| 40 |
},
|
| 41 |
"TinyLlama Chat": {
|
| 42 |
"name": "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
|
| 43 |
-
"description": "
|
| 44 |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
|
| 45 |
},
|
| 46 |
"Mistral Instruct": {
|
|
@@ -50,12 +51,12 @@ MODEL_CONFIG = {
|
|
| 50 |
},
|
| 51 |
"Phi-4 Mini Instruct": {
|
| 52 |
"name": "microsoft/Phi-4-mini-instruct",
|
| 53 |
-
"description": "
|
| 54 |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
|
| 55 |
},
|
| 56 |
"DeepSeek Coder Instruct": {
|
| 57 |
"name": "deepseek-ai/deepseek-coder-1.3b-instruct",
|
| 58 |
-
"description": "1.3B model
|
| 59 |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
|
| 60 |
},
|
| 61 |
"DeepSeek Lite Chat": {
|
|
@@ -81,6 +82,28 @@ MODEL_CONFIG = {
|
|
| 81 |
}
|
| 82 |
}
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
def initialize_model_once(model_key):
|
| 85 |
with MODEL_CACHE["init_lock"]:
|
| 86 |
current_model = MODEL_CACHE["model_name"]
|
|
@@ -99,20 +122,20 @@ def initialize_model_once(model_key):
|
|
| 99 |
try:
|
| 100 |
print(f"Loading model: {model_name}")
|
| 101 |
|
| 102 |
-
#
|
| 103 |
if "GGUF" in model_name:
|
| 104 |
-
# Download model file
|
| 105 |
from huggingface_hub import hf_hub_download
|
| 106 |
try:
|
| 107 |
-
#
|
| 108 |
repo_id = model_name
|
| 109 |
model_path = hf_hub_download(
|
| 110 |
repo_id=repo_id,
|
| 111 |
-
filename="model.gguf" #
|
| 112 |
)
|
| 113 |
except Exception as e:
|
| 114 |
print(f"Couldn't find model.gguf, trying other filenames: {str(e)}")
|
| 115 |
-
#
|
| 116 |
import requests
|
| 117 |
from huggingface_hub import list_repo_files
|
| 118 |
|
|
@@ -122,17 +145,17 @@ def initialize_model_once(model_key):
|
|
| 122 |
if not gguf_files:
|
| 123 |
raise ValueError(f"No GGUF files found in {repo_id}")
|
| 124 |
|
| 125 |
-
#
|
| 126 |
model_path = hf_hub_download(repo_id=repo_id, filename=gguf_files[0])
|
| 127 |
|
| 128 |
-
# Load model
|
| 129 |
MODEL_CACHE["model"] = Llama(
|
| 130 |
model_path=model_path,
|
| 131 |
-
n_ctx=2048, #
|
| 132 |
n_batch=512,
|
| 133 |
-
n_threads=2 #
|
| 134 |
)
|
| 135 |
-
MODEL_CACHE["tokenizer"] = None # GGUF
|
| 136 |
MODEL_CACHE["is_gguf"] = True
|
| 137 |
|
| 138 |
# Handle T5 models
|
|
@@ -148,21 +171,34 @@ def initialize_model_once(model_key):
|
|
| 148 |
|
| 149 |
# Handle standard HF models
|
| 150 |
else:
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
MODEL_CACHE["is_gguf"] = False
|
| 167 |
|
| 168 |
print(f"Model {model_name} loaded successfully")
|
|
@@ -180,17 +216,20 @@ def create_llm_pipeline(model_key):
|
|
| 180 |
print(f"Creating pipeline for model: {model_key}")
|
| 181 |
tokenizer, model, is_gguf = initialize_model_once(model_key)
|
| 182 |
|
|
|
|
|
|
|
|
|
|
| 183 |
if model is None:
|
| 184 |
raise ValueError(f"Model is None for {model_key}")
|
| 185 |
|
| 186 |
# For GGUF models from llama-cpp-python
|
| 187 |
if is_gguf:
|
| 188 |
-
#
|
| 189 |
from langchain.llms import LlamaCpp
|
| 190 |
llm = LlamaCpp(
|
| 191 |
model_path=model.model_path,
|
| 192 |
temperature=0.3,
|
| 193 |
-
max_tokens=
|
| 194 |
top_p=0.9,
|
| 195 |
n_ctx=2048,
|
| 196 |
streaming=False
|
|
@@ -198,13 +237,13 @@ def create_llm_pipeline(model_key):
|
|
| 198 |
return llm
|
| 199 |
|
| 200 |
# Create appropriate pipeline for HF models
|
| 201 |
-
elif
|
| 202 |
print("Creating T5 pipeline")
|
| 203 |
pipe = pipeline(
|
| 204 |
"text2text-generation",
|
| 205 |
model=model,
|
| 206 |
tokenizer=tokenizer,
|
| 207 |
-
max_new_tokens=
|
| 208 |
temperature=0.3,
|
| 209 |
top_p=0.9,
|
| 210 |
return_full_text=False,
|
|
@@ -215,7 +254,7 @@ def create_llm_pipeline(model_key):
|
|
| 215 |
"text-generation",
|
| 216 |
model=model,
|
| 217 |
tokenizer=tokenizer,
|
| 218 |
-
max_new_tokens=
|
| 219 |
temperature=0.3,
|
| 220 |
top_p=0.9,
|
| 221 |
top_k=30,
|
|
@@ -229,6 +268,7 @@ def create_llm_pipeline(model_key):
|
|
| 229 |
import traceback
|
| 230 |
print(f"Error creating pipeline: {str(e)}")
|
| 231 |
print(traceback.format_exc())
|
|
|
|
| 232 |
|
| 233 |
def handle_model_loading_error(model_key, session_id):
|
| 234 |
"""Handle model loading errors by providing alternative model suggestions"""
|
|
@@ -244,113 +284,73 @@ def handle_model_loading_error(model_key, session_id):
|
|
| 244 |
suggested_models.remove(model_key)
|
| 245 |
|
| 246 |
suggestions = ", ".join(suggested_models[:3]) # Only show top 3 suggestions
|
| 247 |
-
return None, f"
|
| 248 |
|
| 249 |
def create_conversational_chain(db, file_path, model_key):
|
| 250 |
llm = create_llm_pipeline(model_key)
|
| 251 |
|
| 252 |
-
# Load the file into pandas to
|
| 253 |
df = pd.read_csv(file_path)
|
| 254 |
|
| 255 |
-
# Create improved prompt template that focuses on
|
| 256 |
template = """
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
|
|
|
|
|
|
|
|
|
| 262 |
{sample_data}
|
| 263 |
-
|
| 264 |
-
|
| 265 |
{context}
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
1.
|
| 271 |
-
2.
|
| 272 |
-
3.
|
| 273 |
-
4.
|
| 274 |
-
5.
|
| 275 |
-
|
| 276 |
-
|
|
|
|
|
|
|
|
|
|
| 277 |
"""
|
| 278 |
|
| 279 |
PROMPT = PromptTemplate(
|
| 280 |
template=template,
|
| 281 |
-
input_variables=["
|
| 282 |
)
|
| 283 |
|
| 284 |
# Create retriever
|
| 285 |
-
retriever = db.as_retriever(search_kwargs={"k":
|
| 286 |
|
| 287 |
# Process query with better error handling
|
| 288 |
def process_query(query, chat_history):
|
| 289 |
try:
|
|
|
|
|
|
|
| 290 |
# Get information from dataframe for context
|
| 291 |
-
|
| 292 |
-
sample_data = df.head(
|
|
|
|
|
|
|
| 293 |
|
| 294 |
# Get context from vector database
|
| 295 |
docs = retriever.get_relevant_documents(query)
|
| 296 |
context = "\n\n".join([doc.page_content for doc in docs])
|
| 297 |
|
| 298 |
-
#
|
| 299 |
-
def preprocess_query():
|
| 300 |
-
query_lower = query.lower()
|
| 301 |
-
result = None
|
| 302 |
-
|
| 303 |
-
# Handle statistical queries directly
|
| 304 |
-
if "rata-rata" in query_lower or "mean" in query_lower or "average" in query_lower:
|
| 305 |
-
for col in df.columns:
|
| 306 |
-
if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
|
| 307 |
-
try:
|
| 308 |
-
result = f"Rata-rata {col} adalah {df[col].mean():.2f}"
|
| 309 |
-
except:
|
| 310 |
-
pass
|
| 311 |
-
|
| 312 |
-
elif "maksimum" in query_lower or "max" in query_lower or "tertinggi" in query_lower:
|
| 313 |
-
for col in df.columns:
|
| 314 |
-
if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
|
| 315 |
-
try:
|
| 316 |
-
result = f"Nilai maksimum {col} adalah {df[col].max():.2f}"
|
| 317 |
-
except:
|
| 318 |
-
pass
|
| 319 |
-
|
| 320 |
-
elif "minimum" in query_lower or "min" in query_lower or "terendah" in query_lower:
|
| 321 |
-
for col in df.columns:
|
| 322 |
-
if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
|
| 323 |
-
try:
|
| 324 |
-
result = f"Nilai minimum {col} adalah {df[col].min():.2f}"
|
| 325 |
-
except:
|
| 326 |
-
pass
|
| 327 |
-
|
| 328 |
-
elif "total" in query_lower or "jumlah" in query_lower or "sum" in query_lower:
|
| 329 |
-
for col in df.columns:
|
| 330 |
-
if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
|
| 331 |
-
try:
|
| 332 |
-
result = f"Total {col} adalah {df[col].sum():.2f}"
|
| 333 |
-
except:
|
| 334 |
-
pass
|
| 335 |
-
|
| 336 |
-
elif "baris" in query_lower or "jumlah data" in query_lower or "row" in query_lower:
|
| 337 |
-
result = f"Jumlah baris data adalah {len(df)}"
|
| 338 |
-
|
| 339 |
-
elif "kolom" in query_lower or "field" in query_lower:
|
| 340 |
-
if "nama" in query_lower or "list" in query_lower or "sebutkan" in query_lower:
|
| 341 |
-
result = f"Kolom dalam data: {', '.join(df.columns.tolist())}"
|
| 342 |
-
|
| 343 |
-
return result
|
| 344 |
-
|
| 345 |
-
# Try direct calculation first
|
| 346 |
-
direct_answer = preprocess_query()
|
| 347 |
-
if direct_answer:
|
| 348 |
-
return {"answer": direct_answer}
|
| 349 |
-
|
| 350 |
-
# If no direct calculation, use the LLM
|
| 351 |
chain = LLMChain(llm=llm, prompt=PROMPT)
|
| 352 |
raw_result = chain.run(
|
| 353 |
-
|
|
|
|
|
|
|
| 354 |
sample_data=sample_data,
|
| 355 |
context=context,
|
| 356 |
question=query
|
|
@@ -361,14 +361,28 @@ def create_conversational_chain(db, file_path, model_key):
|
|
| 361 |
|
| 362 |
# If result is empty after cleaning, use a fallback
|
| 363 |
if not cleaned_result:
|
| 364 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
|
| 366 |
-
return {"answer":
|
|
|
|
| 367 |
except Exception as e:
|
| 368 |
import traceback
|
| 369 |
print(f"Error in process_query: {str(e)}")
|
| 370 |
print(traceback.format_exc())
|
| 371 |
-
return {"answer": f"
|
| 372 |
|
| 373 |
return process_query
|
| 374 |
|
|
@@ -387,7 +401,7 @@ class ChatBot:
|
|
| 387 |
self.model_key = model_key
|
| 388 |
|
| 389 |
if file is None:
|
| 390 |
-
return "
|
| 391 |
|
| 392 |
try:
|
| 393 |
print(f"Processing file using model: {self.model_key}")
|
|
@@ -410,7 +424,7 @@ class ChatBot:
|
|
| 410 |
print(f"CSV saved to {user_file_path}")
|
| 411 |
except Exception as e:
|
| 412 |
print(f"Error reading CSV: {str(e)}")
|
| 413 |
-
return f"Error
|
| 414 |
|
| 415 |
# Load document with reduced chunk size for better memory usage
|
| 416 |
try:
|
|
@@ -451,20 +465,20 @@ class ChatBot:
|
|
| 451 |
return f"Error creating chain: {str(e)}"
|
| 452 |
|
| 453 |
# Add basic file info to chat history for context
|
| 454 |
-
file_info = f"CSV
|
| 455 |
self.chat_history.append(("System", file_info))
|
| 456 |
|
| 457 |
-
return f"
|
| 458 |
except Exception as e:
|
| 459 |
import traceback
|
| 460 |
print(traceback.format_exc())
|
| 461 |
-
return f"
|
| 462 |
|
| 463 |
def change_model(self, model_key):
|
| 464 |
"""Change the model being used and recreate the chain if necessary"""
|
| 465 |
try:
|
| 466 |
if model_key == self.model_key:
|
| 467 |
-
return f"Model {model_key}
|
| 468 |
|
| 469 |
print(f"Changing model from {self.model_key} to {model_key}")
|
| 470 |
self.model_key = model_key
|
|
@@ -475,7 +489,7 @@ class ChatBot:
|
|
| 475 |
# Load existing database
|
| 476 |
db_path = f"{self.user_dir}/db_faiss"
|
| 477 |
if not os.path.exists(db_path):
|
| 478 |
-
return f"Error: Database
|
| 479 |
|
| 480 |
print(f"Loading embeddings from {db_path}")
|
| 481 |
embeddings = HuggingFaceEmbeddings(
|
|
@@ -483,7 +497,7 @@ class ChatBot:
|
|
| 483 |
model_kwargs={'device': 'cpu'}
|
| 484 |
)
|
| 485 |
|
| 486 |
-
#
|
| 487 |
db = FAISS.load_local(db_path, embeddings, allow_dangerous_deserialization=True)
|
| 488 |
print(f"FAISS database loaded successfully")
|
| 489 |
|
|
@@ -493,38 +507,38 @@ class ChatBot:
|
|
| 493 |
print(f"Chain created successfully")
|
| 494 |
|
| 495 |
# Add notification to chat history
|
| 496 |
-
self.chat_history.append(("System", f"Model
|
| 497 |
|
| 498 |
-
return f"Model
|
| 499 |
except Exception as e:
|
| 500 |
import traceback
|
| 501 |
error_trace = traceback.format_exc()
|
| 502 |
print(f"Detailed error in change_model: {error_trace}")
|
| 503 |
-
return f"Error
|
| 504 |
else:
|
| 505 |
# Just update the model key if no file is loaded yet
|
| 506 |
print(f"No CSV file loaded yet, just updating model preference to {model_key}")
|
| 507 |
-
return f"Model
|
| 508 |
except Exception as e:
|
| 509 |
import traceback
|
| 510 |
error_trace = traceback.format_exc()
|
| 511 |
print(f"Unexpected error in change_model: {error_trace}")
|
| 512 |
-
return f"
|
| 513 |
|
| 514 |
def chat(self, message, history):
|
| 515 |
if self.chain is None:
|
| 516 |
-
return "
|
| 517 |
|
| 518 |
try:
|
| 519 |
# Process the question with the chain
|
| 520 |
result = self.chain(message, self.chat_history)
|
| 521 |
|
| 522 |
# Get the answer with fallback
|
| 523 |
-
answer = result.get("answer", "
|
| 524 |
|
| 525 |
# Ensure we never return empty
|
| 526 |
if not answer or answer.strip() == "":
|
| 527 |
-
answer = "
|
| 528 |
|
| 529 |
# Update internal chat history
|
| 530 |
self.chat_history.append((message, answer))
|
|
@@ -553,7 +567,7 @@ def create_gradio_interface():
|
|
| 553 |
with gr.Row():
|
| 554 |
with gr.Column(scale=1):
|
| 555 |
with gr.Group():
|
| 556 |
-
gr.Markdown("###
|
| 557 |
model_dropdown = gr.Dropdown(
|
| 558 |
label="Model",
|
| 559 |
choices=model_choices,
|
|
@@ -565,28 +579,28 @@ def create_gradio_interface():
|
|
| 565 |
)
|
| 566 |
|
| 567 |
with gr.Group():
|
| 568 |
-
gr.Markdown("###
|
| 569 |
file_input = gr.File(
|
| 570 |
label="Upload CSV Anda",
|
| 571 |
file_types=[".csv"]
|
| 572 |
)
|
| 573 |
-
process_button = gr.Button("
|
| 574 |
|
| 575 |
-
reset_button = gr.Button("Reset
|
| 576 |
|
| 577 |
with gr.Column(scale=2):
|
| 578 |
chatbot_interface = gr.Chatbot(
|
| 579 |
-
label="
|
| 580 |
# type="messages",
|
| 581 |
height=400
|
| 582 |
)
|
| 583 |
message_input = gr.Textbox(
|
| 584 |
-
label="
|
| 585 |
-
placeholder="
|
| 586 |
lines=2
|
| 587 |
)
|
| 588 |
-
submit_button = gr.Button("
|
| 589 |
-
clear_button = gr.Button("
|
| 590 |
|
| 591 |
# Update model info when selection changes
|
| 592 |
def update_model_info(model_key):
|
|
@@ -601,7 +615,7 @@ def create_gradio_interface():
|
|
| 601 |
# Process file handler - disables model selection after file is processed
|
| 602 |
def handle_process_file(file, model_key, sess_id):
|
| 603 |
if file is None:
|
| 604 |
-
return None, None, False, "
|
| 605 |
|
| 606 |
try:
|
| 607 |
chatbot = ChatBot(sess_id, model_key)
|
|
@@ -611,6 +625,8 @@ def create_gradio_interface():
|
|
| 611 |
import traceback
|
| 612 |
print(f"Error processing file with {model_key}: {str(e)}")
|
| 613 |
print(traceback.format_exc())
|
|
|
|
|
|
|
| 614 |
|
| 615 |
process_button.click(
|
| 616 |
fn=handle_process_file,
|
|
@@ -641,7 +657,7 @@ def create_gradio_interface():
|
|
| 641 |
def bot_response(history, chatbot, sess_id):
|
| 642 |
if chatbot is None:
|
| 643 |
chatbot = ChatBot(sess_id)
|
| 644 |
-
history[-1] = (history[-1][0], "
|
| 645 |
return chatbot, history
|
| 646 |
|
| 647 |
user_message = history[-1][0]
|
|
|
|
| 30 |
|
| 31 |
# Create directories for user data
|
| 32 |
os.makedirs("user_data", exist_ok=True)
|
| 33 |
+
os.makedirs("performance_metrics", exist_ok=True)
|
| 34 |
|
| 35 |
# Model configuration dictionary
|
| 36 |
MODEL_CONFIG = {
|
|
|
|
| 41 |
},
|
| 42 |
"TinyLlama Chat": {
|
| 43 |
"name": "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
|
| 44 |
+
"description": "Lightweight model with 1.1B parameters, fast and efficient",
|
| 45 |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
|
| 46 |
},
|
| 47 |
"Mistral Instruct": {
|
|
|
|
| 51 |
},
|
| 52 |
"Phi-4 Mini Instruct": {
|
| 53 |
"name": "microsoft/Phi-4-mini-instruct",
|
| 54 |
+
"description": "Lightweight model from Microsoft suitable for instructional tasks",
|
| 55 |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
|
| 56 |
},
|
| 57 |
"DeepSeek Coder Instruct": {
|
| 58 |
"name": "deepseek-ai/deepseek-coder-1.3b-instruct",
|
| 59 |
+
"description": "1.3B model for code and data analysis",
|
| 60 |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
|
| 61 |
},
|
| 62 |
"DeepSeek Lite Chat": {
|
|
|
|
| 82 |
}
|
| 83 |
}
|
| 84 |
|
| 85 |
+
# Performance metrics tracking
|
| 86 |
+
class PerformanceTracker:
|
| 87 |
+
def __init__(self):
|
| 88 |
+
self.metrics_file = "performance_metrics/model_performance.csv"
|
| 89 |
+
|
| 90 |
+
# Create metrics file if it doesn't exist
|
| 91 |
+
if not os.path.exists(self.metrics_file):
|
| 92 |
+
with open(self.metrics_file, "w") as f:
|
| 93 |
+
f.write("timestamp,model,question,processing_time,response_length\n")
|
| 94 |
+
|
| 95 |
+
def log_performance(self, model_name, question, processing_time, response):
|
| 96 |
+
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 97 |
+
response_length = len(response)
|
| 98 |
+
|
| 99 |
+
with open(self.metrics_file, "a") as f:
|
| 100 |
+
f.write(f'"{timestamp}","{model_name}","{question}",{processing_time},{response_length}\n')
|
| 101 |
+
|
| 102 |
+
print(f"Logged performance for {model_name}: {processing_time:.2f}s")
|
| 103 |
+
|
| 104 |
+
# Initialize performance tracker
|
| 105 |
+
performance_tracker = PerformanceTracker()
|
| 106 |
+
|
| 107 |
def initialize_model_once(model_key):
|
| 108 |
with MODEL_CACHE["init_lock"]:
|
| 109 |
current_model = MODEL_CACHE["model_name"]
|
|
|
|
| 122 |
try:
|
| 123 |
print(f"Loading model: {model_name}")
|
| 124 |
|
| 125 |
+
# Check if this is a GGUF model
|
| 126 |
if "GGUF" in model_name:
|
| 127 |
+
# Download the model file first if it doesn't exist
|
| 128 |
from huggingface_hub import hf_hub_download
|
| 129 |
try:
|
| 130 |
+
# Try to find the GGUF file in the repo
|
| 131 |
repo_id = model_name
|
| 132 |
model_path = hf_hub_download(
|
| 133 |
repo_id=repo_id,
|
| 134 |
+
filename="model.gguf" # File name may differ
|
| 135 |
)
|
| 136 |
except Exception as e:
|
| 137 |
print(f"Couldn't find model.gguf, trying other filenames: {str(e)}")
|
| 138 |
+
# Try to find GGUF file with other names
|
| 139 |
import requests
|
| 140 |
from huggingface_hub import list_repo_files
|
| 141 |
|
|
|
|
| 145 |
if not gguf_files:
|
| 146 |
raise ValueError(f"No GGUF files found in {repo_id}")
|
| 147 |
|
| 148 |
+
# Use first GGUF file found
|
| 149 |
model_path = hf_hub_download(repo_id=repo_id, filename=gguf_files[0])
|
| 150 |
|
| 151 |
+
# Load GGUF model with llama-cpp-python
|
| 152 |
MODEL_CACHE["model"] = Llama(
|
| 153 |
model_path=model_path,
|
| 154 |
+
n_ctx=2048, # Smaller context for memory savings
|
| 155 |
n_batch=512,
|
| 156 |
+
n_threads=2 # Adjust for 2 vCPU
|
| 157 |
)
|
| 158 |
+
MODEL_CACHE["tokenizer"] = None # GGUF doesn't need separate tokenizer
|
| 159 |
MODEL_CACHE["is_gguf"] = True
|
| 160 |
|
| 161 |
# Handle T5 models
|
|
|
|
| 171 |
|
| 172 |
# Handle standard HF models
|
| 173 |
else:
|
| 174 |
+
# Only use quantization if CUDA is available
|
| 175 |
+
if torch.cuda.is_available():
|
| 176 |
+
quantization_config = BitsAndBytesConfig(
|
| 177 |
+
load_in_4bit=True,
|
| 178 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 179 |
+
bnb_4bit_quant_type="nf4",
|
| 180 |
+
bnb_4bit_use_double_quant=True
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 184 |
+
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
|
| 185 |
+
model_name,
|
| 186 |
+
quantization_config=quantization_config,
|
| 187 |
+
torch_dtype=model_info["dtype"],
|
| 188 |
+
device_map="auto",
|
| 189 |
+
low_cpu_mem_usage=True,
|
| 190 |
+
trust_remote_code=True
|
| 191 |
+
)
|
| 192 |
+
else:
|
| 193 |
+
# For CPU-only environments, load without quantization
|
| 194 |
+
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 195 |
+
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
|
| 196 |
+
model_name,
|
| 197 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
| 198 |
+
device_map=None,
|
| 199 |
+
low_cpu_mem_usage=True,
|
| 200 |
+
trust_remote_code=True
|
| 201 |
+
)
|
| 202 |
MODEL_CACHE["is_gguf"] = False
|
| 203 |
|
| 204 |
print(f"Model {model_name} loaded successfully")
|
|
|
|
| 216 |
print(f"Creating pipeline for model: {model_key}")
|
| 217 |
tokenizer, model, is_gguf = initialize_model_once(model_key)
|
| 218 |
|
| 219 |
+
# Get the model info for reference
|
| 220 |
+
model_info = MODEL_CONFIG[model_key]
|
| 221 |
+
|
| 222 |
if model is None:
|
| 223 |
raise ValueError(f"Model is None for {model_key}")
|
| 224 |
|
| 225 |
# For GGUF models from llama-cpp-python
|
| 226 |
if is_gguf:
|
| 227 |
+
# Create adapter to use GGUF model like HF pipeline
|
| 228 |
from langchain.llms import LlamaCpp
|
| 229 |
llm = LlamaCpp(
|
| 230 |
model_path=model.model_path,
|
| 231 |
temperature=0.3,
|
| 232 |
+
max_tokens=256, # Increased for more comprehensive answers
|
| 233 |
top_p=0.9,
|
| 234 |
n_ctx=2048,
|
| 235 |
streaming=False
|
|
|
|
| 237 |
return llm
|
| 238 |
|
| 239 |
# Create appropriate pipeline for HF models
|
| 240 |
+
elif model_info.get("is_t5", False):
|
| 241 |
print("Creating T5 pipeline")
|
| 242 |
pipe = pipeline(
|
| 243 |
"text2text-generation",
|
| 244 |
model=model,
|
| 245 |
tokenizer=tokenizer,
|
| 246 |
+
max_new_tokens=256, # Increased for more comprehensive answers
|
| 247 |
temperature=0.3,
|
| 248 |
top_p=0.9,
|
| 249 |
return_full_text=False,
|
|
|
|
| 254 |
"text-generation",
|
| 255 |
model=model,
|
| 256 |
tokenizer=tokenizer,
|
| 257 |
+
max_new_tokens=256, # Increased for more comprehensive answers
|
| 258 |
temperature=0.3,
|
| 259 |
top_p=0.9,
|
| 260 |
top_k=30,
|
|
|
|
| 268 |
import traceback
|
| 269 |
print(f"Error creating pipeline: {str(e)}")
|
| 270 |
print(traceback.format_exc())
|
| 271 |
+
raise RuntimeError(f"Failed to create pipeline: {str(e)}")
|
| 272 |
|
| 273 |
def handle_model_loading_error(model_key, session_id):
|
| 274 |
"""Handle model loading errors by providing alternative model suggestions"""
|
|
|
|
| 284 |
suggested_models.remove(model_key)
|
| 285 |
|
| 286 |
suggestions = ", ".join(suggested_models[:3]) # Only show top 3 suggestions
|
| 287 |
+
return None, f"Unable to load model {model_key}. Please try another model such as: {suggestions}"
|
| 288 |
|
| 289 |
def create_conversational_chain(db, file_path, model_key):
|
| 290 |
llm = create_llm_pipeline(model_key)
|
| 291 |
|
| 292 |
+
# Load the file into pandas to get metadata about the CSV
|
| 293 |
df = pd.read_csv(file_path)
|
| 294 |
|
| 295 |
+
# Create improved prompt template that focuses on pure LLM analysis
|
| 296 |
template = """
|
| 297 |
+
You are an expert data analyst tasked with answering questions about a CSV file. The file has been analyzed, and its structure is provided below.
|
| 298 |
+
|
| 299 |
+
CSV File Structure:
|
| 300 |
+
- Total rows: {row_count}
|
| 301 |
+
- Total columns: {column_count}
|
| 302 |
+
- Columns: {columns_list}
|
| 303 |
+
|
| 304 |
+
Sample data (first few rows):
|
| 305 |
{sample_data}
|
| 306 |
+
|
| 307 |
+
Additional context from the document:
|
| 308 |
{context}
|
| 309 |
+
|
| 310 |
+
User Question: {question}
|
| 311 |
+
|
| 312 |
+
IMPORTANT INSTRUCTIONS:
|
| 313 |
+
1. Answer the question directly about the CSV data with accurate information.
|
| 314 |
+
2. If asked for basic statistics (mean, sum, max, min, count, etc.), perform the calculation mentally and provide the result. Include up to 2 decimal places for non-integer values.
|
| 315 |
+
3. If asked about patterns or trends, analyze the data thoughtfully.
|
| 316 |
+
4. Keep answers concise but informative. Respond in the same language as the question.
|
| 317 |
+
5. If you are not certain of a precise answer, explain what you can determine from the available data.
|
| 318 |
+
6. You can perform simple calculations including: counts, sums, averages, minimums, maximums, and basic filtering.
|
| 319 |
+
7. For questions about specific values in the data, reference the sample data and available context.
|
| 320 |
+
8. Do not mention any programming language or how you would code the solution.
|
| 321 |
+
|
| 322 |
+
Your analysis:
|
| 323 |
"""
|
| 324 |
|
| 325 |
PROMPT = PromptTemplate(
|
| 326 |
template=template,
|
| 327 |
+
input_variables=["row_count", "column_count", "columns_list", "sample_data", "context", "question"]
|
| 328 |
)
|
| 329 |
|
| 330 |
# Create retriever
|
| 331 |
+
retriever = db.as_retriever(search_kwargs={"k": 5}) # Increase k for better context
|
| 332 |
|
| 333 |
# Process query with better error handling
|
| 334 |
def process_query(query, chat_history):
|
| 335 |
try:
|
| 336 |
+
start_time = time.time()
|
| 337 |
+
|
| 338 |
# Get information from dataframe for context
|
| 339 |
+
columns_list = ", ".join(df.columns.tolist())
|
| 340 |
+
sample_data = df.head(5).to_string() # Show 5 rows for better context
|
| 341 |
+
row_count = len(df)
|
| 342 |
+
column_count = len(df.columns)
|
| 343 |
|
| 344 |
# Get context from vector database
|
| 345 |
docs = retriever.get_relevant_documents(query)
|
| 346 |
context = "\n\n".join([doc.page_content for doc in docs])
|
| 347 |
|
| 348 |
+
# Run the chain
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 349 |
chain = LLMChain(llm=llm, prompt=PROMPT)
|
| 350 |
raw_result = chain.run(
|
| 351 |
+
row_count=row_count,
|
| 352 |
+
column_count=column_count,
|
| 353 |
+
columns_list=columns_list,
|
| 354 |
sample_data=sample_data,
|
| 355 |
context=context,
|
| 356 |
question=query
|
|
|
|
| 361 |
|
| 362 |
# If result is empty after cleaning, use a fallback
|
| 363 |
if not cleaned_result:
|
| 364 |
+
cleaned_result = "I couldn't process a complete answer to your question. Please try asking in a different way or provide more specific details about what you'd like to know about the data."
|
| 365 |
+
|
| 366 |
+
processing_time = time.time() - start_time
|
| 367 |
+
|
| 368 |
+
# Log performance metrics
|
| 369 |
+
performance_tracker.log_performance(
|
| 370 |
+
model_key,
|
| 371 |
+
query,
|
| 372 |
+
processing_time,
|
| 373 |
+
cleaned_result
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
# Add processing time to the response for comparison purposes
|
| 377 |
+
result_with_metrics = f"{cleaned_result}\n\n[Processing time: {processing_time:.2f} seconds]"
|
| 378 |
|
| 379 |
+
return {"answer": result_with_metrics}
|
| 380 |
+
|
| 381 |
except Exception as e:
|
| 382 |
import traceback
|
| 383 |
print(f"Error in process_query: {str(e)}")
|
| 384 |
print(traceback.format_exc())
|
| 385 |
+
return {"answer": f"An error occurred while processing your question: {str(e)}"}
|
| 386 |
|
| 387 |
return process_query
|
| 388 |
|
|
|
|
| 401 |
self.model_key = model_key
|
| 402 |
|
| 403 |
if file is None:
|
| 404 |
+
return "Please upload a CSV file first."
|
| 405 |
|
| 406 |
try:
|
| 407 |
print(f"Processing file using model: {self.model_key}")
|
|
|
|
| 424 |
print(f"CSV saved to {user_file_path}")
|
| 425 |
except Exception as e:
|
| 426 |
print(f"Error reading CSV: {str(e)}")
|
| 427 |
+
return f"Error reading CSV: {str(e)}"
|
| 428 |
|
| 429 |
# Load document with reduced chunk size for better memory usage
|
| 430 |
try:
|
|
|
|
| 465 |
return f"Error creating chain: {str(e)}"
|
| 466 |
|
| 467 |
# Add basic file info to chat history for context
|
| 468 |
+
file_info = f"CSV successfully loaded with {df.shape[0]} rows and {len(df.columns)} columns using model {self.model_key}. Columns: {', '.join(df.columns.tolist())}"
|
| 469 |
self.chat_history.append(("System", file_info))
|
| 470 |
|
| 471 |
+
return f"CSV file successfully processed with model {self.model_key}! You can now chat with the model to analyze the data."
|
| 472 |
except Exception as e:
|
| 473 |
import traceback
|
| 474 |
print(traceback.format_exc())
|
| 475 |
+
return f"File processing error: {str(e)}"
|
| 476 |
|
| 477 |
def change_model(self, model_key):
|
| 478 |
"""Change the model being used and recreate the chain if necessary"""
|
| 479 |
try:
|
| 480 |
if model_key == self.model_key:
|
| 481 |
+
return f"Model {model_key} is already in use."
|
| 482 |
|
| 483 |
print(f"Changing model from {self.model_key} to {model_key}")
|
| 484 |
self.model_key = model_key
|
|
|
|
| 489 |
# Load existing database
|
| 490 |
db_path = f"{self.user_dir}/db_faiss"
|
| 491 |
if not os.path.exists(db_path):
|
| 492 |
+
return f"Error: Database not found. Please upload the CSV file again."
|
| 493 |
|
| 494 |
print(f"Loading embeddings from {db_path}")
|
| 495 |
embeddings = HuggingFaceEmbeddings(
|
|
|
|
| 497 |
model_kwargs={'device': 'cpu'}
|
| 498 |
)
|
| 499 |
|
| 500 |
+
# Add allow_dangerous_deserialization=True flag
|
| 501 |
db = FAISS.load_local(db_path, embeddings, allow_dangerous_deserialization=True)
|
| 502 |
print(f"FAISS database loaded successfully")
|
| 503 |
|
|
|
|
| 507 |
print(f"Chain created successfully")
|
| 508 |
|
| 509 |
# Add notification to chat history
|
| 510 |
+
self.chat_history.append(("System", f"Model successfully changed to {model_key}."))
|
| 511 |
|
| 512 |
+
return f"Model successfully changed to {model_key}."
|
| 513 |
except Exception as e:
|
| 514 |
import traceback
|
| 515 |
error_trace = traceback.format_exc()
|
| 516 |
print(f"Detailed error in change_model: {error_trace}")
|
| 517 |
+
return f"Error changing model: {str(e)}"
|
| 518 |
else:
|
| 519 |
# Just update the model key if no file is loaded yet
|
| 520 |
print(f"No CSV file loaded yet, just updating model preference to {model_key}")
|
| 521 |
+
return f"Model changed to {model_key}. Please upload a CSV file to begin."
|
| 522 |
except Exception as e:
|
| 523 |
import traceback
|
| 524 |
error_trace = traceback.format_exc()
|
| 525 |
print(f"Unexpected error in change_model: {error_trace}")
|
| 526 |
+
return f"Unexpected error while changing model: {str(e)}"
|
| 527 |
|
| 528 |
def chat(self, message, history):
|
| 529 |
if self.chain is None:
|
| 530 |
+
return "Please upload a CSV file first."
|
| 531 |
|
| 532 |
try:
|
| 533 |
# Process the question with the chain
|
| 534 |
result = self.chain(message, self.chat_history)
|
| 535 |
|
| 536 |
# Get the answer with fallback
|
| 537 |
+
answer = result.get("answer", "Sorry, I couldn't generate an answer. Please try asking a different question.")
|
| 538 |
|
| 539 |
# Ensure we never return empty
|
| 540 |
if not answer or answer.strip() == "":
|
| 541 |
+
answer = "Sorry, I couldn't generate an appropriate answer. Please try asking the question differently."
|
| 542 |
|
| 543 |
# Update internal chat history
|
| 544 |
self.chat_history.append((message, answer))
|
|
|
|
| 567 |
with gr.Row():
|
| 568 |
with gr.Column(scale=1):
|
| 569 |
with gr.Group():
|
| 570 |
+
gr.Markdown("### Step 1: Choose AI Model")
|
| 571 |
model_dropdown = gr.Dropdown(
|
| 572 |
label="Model",
|
| 573 |
choices=model_choices,
|
|
|
|
| 579 |
)
|
| 580 |
|
| 581 |
with gr.Group():
|
| 582 |
+
gr.Markdown("### Step 2: Upload and Process CSV")
|
| 583 |
file_input = gr.File(
|
| 584 |
label="Upload CSV Anda",
|
| 585 |
file_types=[".csv"]
|
| 586 |
)
|
| 587 |
+
process_button = gr.Button("Process CSV")
|
| 588 |
|
| 589 |
+
reset_button = gr.Button("Reset Session (To Change Model)")
|
| 590 |
|
| 591 |
with gr.Column(scale=2):
|
| 592 |
chatbot_interface = gr.Chatbot(
|
| 593 |
+
label="Chat History",
|
| 594 |
# type="messages",
|
| 595 |
height=400
|
| 596 |
)
|
| 597 |
message_input = gr.Textbox(
|
| 598 |
+
label="Type your message",
|
| 599 |
+
placeholder="Ask questions about your CSV data...",
|
| 600 |
lines=2
|
| 601 |
)
|
| 602 |
+
submit_button = gr.Button("Send")
|
| 603 |
+
clear_button = gr.Button("Clear Chat")
|
| 604 |
|
| 605 |
# Update model info when selection changes
|
| 606 |
def update_model_info(model_key):
|
|
|
|
| 615 |
# Process file handler - disables model selection after file is processed
|
| 616 |
def handle_process_file(file, model_key, sess_id):
|
| 617 |
if file is None:
|
| 618 |
+
return None, None, False, "Please upload a CSV file first."
|
| 619 |
|
| 620 |
try:
|
| 621 |
chatbot = ChatBot(sess_id, model_key)
|
|
|
|
| 625 |
import traceback
|
| 626 |
print(f"Error processing file with {model_key}: {str(e)}")
|
| 627 |
print(traceback.format_exc())
|
| 628 |
+
error_msg = f"Error with model {model_key}: {str(e)}\n\nPlease try another model."
|
| 629 |
+
return None, False, [(None, error_msg)]
|
| 630 |
|
| 631 |
process_button.click(
|
| 632 |
fn=handle_process_file,
|
|
|
|
| 657 |
def bot_response(history, chatbot, sess_id):
|
| 658 |
if chatbot is None:
|
| 659 |
chatbot = ChatBot(sess_id)
|
| 660 |
+
history[-1] = (history[-1][0], "Please upload a CSV file first.")
|
| 661 |
return chatbot, history
|
| 662 |
|
| 663 |
user_message = history[-1][0]
|