File size: 9,959 Bytes
b1ec78c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import streamlit as st
import os
import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
from rdkit import Chem
from streamlit_ketcher import st_ketcher
from io import StringIO


from openadmet_models.models.gradient_boosting.lgbm import LGBMRegressorModel
from openadmet_models.features.combine import FeatureConcatenator
from openadmet_models.features.molfeat_properties import DescriptorFeaturizer
from openadmet_models.features.molfeat_fingerprint import FingerprintFeaturizer



def _is_valid_smiles(smi):
    if smi is None or smi == "":
        return False
    try:
        m = Chem.MolFromSmiles(smi)
        if m is None:
            return False
        else:
            return True
    except:
        return False


def sdf_str_to_rdkit_mol(sdf):
    from io import BytesIO

    bio = BytesIO(sdf.encode())
    suppl = Chem.ForwardSDMolSupplier(bio, removeHs=False)
    mols = [mol for mol in suppl if mol is not None]
    return mols


@st.cache_data
def convert_df(df):
    # IMPORTANT: Cache the conversion to prevent computation on every rerun
    return df.to_csv().encode("utf-8")



def get_model(path, target, model_type):
    

    model_path = os.path.join(path, f"{model_type}/{target.lower()}_model.json")
    model_file = os.path.join(path, f"{model_type}/{target.lower()}_model.pkl")

    print(model_path, model_file)

    if not os.path.exists(model_path) or not os.path.exists(model_file):
        return None

    model = LGBMRegressorModel.deserialize(model_path, model_file)
    featurizer = FeatureConcatenator(featurizers=[FingerprintFeaturizer(fp_type="ecfp:4"), DescriptorFeaturizer(descr_type="mordred")])
    return model, featurizer

# Set the title of the Streamlit app
st.title("OpenADMET Streamlit DEMO")

# Set the title of the Streamlit app
st.title("OpenADMET Streamlit DEMO")

st.markdown("## Background")

st.markdown(
    "**The [OpenADMET](https://openadmet.org) initiative provides a suite of open-source machine learning models to predict ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties, facilitating drug discovery and development.**"
)

st.markdown(
    "This web app enables researchers and scientists to leverage OpenADMET’s models without needing to write or run code, making predictive analytics more accessible."
)
st.markdown("---")
st.markdown("## Input :clipboard:")

input = st.selectbox(
    "How would you like to enter your input?",
    ["Upload a CSV file", "Draw a molecule", "Enter SMILES", "Upload an SDF file"],
    key="input",
)

multismiles = False
if input == "Draw a molecule":
    smiles = st_ketcher(None)
    if _is_valid_smiles(smiles):
        st.success("Valid molecule", icon="✅")
    else:
        st.error("Invalid molecule", icon="🚨")
        st.stop()
    smiles = [smiles]
    queried_df = pd.DataFrame(smiles, columns=["SMILES"])
    smiles_column_name = "SMILES"
    smiles_column = queried_df[smiles_column_name]
elif input == "Enter SMILES":
    smiles = st.text_input("Enter a SMILES string", key="smiles_user_input")
    if _is_valid_smiles(smiles):
        st.success("Valid SMILES string", icon="✅")
    else:
        st.error("Invalid SMILES string", icon="🚨")
        st.stop()
    smiles = [smiles]
    queried_df = pd.DataFrame(smiles, columns=["SMILES"])
    smiles_column_name = "SMILES"
    smiles_column = queried_df[smiles_column_name]
elif input == "Upload a CSV file":
    # Create a file uploader for CSV files
    uploaded_file = st.file_uploader(
        "Choose a CSV file to upload your predictions to", type="csv", key="csv_file"
    )

    # If a file is uploaded, parse it into a DataFrame
    if uploaded_file is not None:
        queried_df = pd.read_csv(uploaded_file)
    else:
        st.stop()
    # Select a column from the DataFrame
    smiles_column_name = st.selectbox("Select a SMILES column", queried_df.columns, key="df_smiles_column")
    multismiles = True
    smiles_column = queried_df[smiles_column_name]

    # check if the smiles are valid
    valid_smiles = [_is_valid_smiles(smi) for smi in smiles_column]
    if not all(valid_smiles):
        st.error(
            "Some of the SMILES strings are invalid, please check the input", icon="🚨"
        )
        st.stop()
    st.success(
        f"All SMILES strings are valid (n={len(valid_smiles)}), proceeding with prediction",
        icon="✅",
    )

elif input == "Upload an SDF file":
    # Create a file uploader for SDF files
    uploaded_file = st.file_uploader(
        "Choose a SDF file to upload your predictions to", type="sdf"
    )
    # read with rdkit
    if uploaded_file is not None:
        # To convert to a string based IO:
        try:
            stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
            # To read file as string:
            string_data = stringio.read()
            mols = sdf_str_to_rdkit_mol(string_data)
            smiles = [Chem.MolToSmiles(m) for m in mols]
            queried_df = pd.DataFrame(smiles, columns=["SMILES"])
        except:
            st.error("Error reading the SDF file, please check the input", icon="🚨")
            st.stop()
    else:
        st.error("No file uploaded", icon="🚨")
        st.stop()

    st.success(
        f"All molecule entries are valid (n={len(queried_df)}), proceeding with prediction",
        icon="✅",
    )
    smiles_column_name = "SMILES"
    smiles_column = queried_df[smiles_column_name]
    multismiles = True

st.markdown("## Model parameters :nut_and_bolt:")




targets = ['CYP3A4', 'CYP2D6', 'CYP2C9']
models = {"ecfp:4 Mordred LGBM":"ecfp4_mordred_lgbm", "ChemProp":"chemprop"}
models_inversed = {v: k for k, v in models.items()}

model_names = list(models.keys())

endpoints = ["pIC50"]

# Select a target value from the preset list
target_value = st.selectbox("Select a biological target ", targets, key="target")
# endpoints


# Select a target value from the preset list
endpoint_value = st.selectbox("Select a property ", endpoints, key="endpoint")

model_value = st.selectbox("Select a model type ", model_names, key="model")


if target_value != "CYP3A4":
    st.write("Only CYP3A4 is currently supported")
    st.stop()

if endpoint_value != "pIC50":
    st.write("Only pIC50 is currently supported")
    st.stop()

if model_value != "ecfp:4 Mordred LGBM":
    st.write("Only ecfp:4 Mordred LGBM is currently supported")
    st.stop()

model, featurizer = get_model("./models", target_value, models[model_value])




if model is None:
    st.write(f"No model found for {target_value} {endpoint_value}")
    st.stop()
    # retry with a different target or endpoint

st.markdown("## Prediction 🚀")


st.write(
    f"Predicting **{target_value} {endpoint_value}** using model:\n\n `{model_value}`"
)

# featurize the smiles
X, _ = featurizer.featurize(smiles_column)
# predict the properties
preds = model.predict(X)

# not implemented yet
err = None


pred_column_name = f"{target_value}_computed-{endpoint_value}"
unc_column_name = f"{target_value}_computed-{endpoint_value}_uncertainty"
queried_df[pred_column_name] = preds
queried_df[unc_column_name] = err

st.markdown("---")
if multismiles:
    # plot the predictions and errors
    # Histogram first
    fig, ax = plt.subplots()

    sorted_df = queried_df.sort_values(by=pred_column_name)
    n_bins = int(len(sorted_df[pred_column_name]) / 10)
    if n_bins < 5:  # makes the histogram slightly more interpretable with low data
        n_bins = 5

    ax.hist(sorted_df[pred_column_name], bins=n_bins)

    ax.set_ylabel("Count")
    ax.set_xlabel(f"Computed {endpoint_value}")
    ax.set_title(f"Histogram of computed {endpoint_value} for target: {target_value}")

    st.pyplot(fig)

    # then a barplot
    fig, ax = plt.subplots()

    ax.bar(range(len(sorted_df)), sorted_df[pred_column_name])

    ax.set_xticks([])
    ax.set_xlabel(f"Query compounds")
    ax.set_ylabel(f"Computed {endpoint_value}")

    ax.set_title(f"Barplot of computed {endpoint_value} for target: {target_value}")

    st.pyplot(fig)

    # if endpoint_value == "pIC50":
    #     from rdkit.Chem.Descriptors import MolWt
    #     import seaborn as sns

    #     # then a scatterplot of uncertainty vs MW
    #     queried_df["MW"] = [
    #         MolWt(Chem.MolFromSmiles(smi)) for smi in sorted_df[smiles_column_name]
    #     ]
    #     fig, ax = plt.subplots()

    #     ax = sns.scatterplot(
    #         x="MW",
    #         y=pred_column_name,
    #         hue=unc_column_name,
    #         palette="coolwarm",
    #         data=queried_df,
    #     )

    #     norm = plt.Normalize(
    #         queried_df[unc_column_name].min(), queried_df[unc_column_name].max()
    #     )
    #     sm = plt.cm.ScalarMappable(cmap="coolwarm", norm=norm)
    #     sm.set_array([])

    #     # Remove the legend and add a colorbar
    #     cbar = ax.figure.colorbar(sm, ax=ax)
    #     ax.annotate(
    #         f"Computed {endpoint_value} uncertainty",
    #         xy=(1.2, 0.3),
    #         xycoords="axes fraction",
    #         rotation=270,
    #     )

    #     ax.set_title(
    #         f"Scatterplot of predicted {endpoint_value} versus MW\ntarget: {target_value}"
    #     )
    #     ax.set_xlabel(f"Molecular weight (Da)")
    #     ax.set_ylabel(f"Computed {endpoint_value}")
    #     st.pyplot(fig)

else:
    # just print the prediction
    preds = queried_df[pred_column_name].values[0]
    smiles = queried_df["SMILES"].values[0]
    if err:
        err = queried_df[unc_column_name].values[0]
        errstr = f"± {err:.2f}"
    else:
        errstr = ""

    st.markdown(
        f"Predicted {target_value} {endpoint_value} for {smiles} is {preds:.2f} {errstr}."
    )

# allow the user to download the predictions
csv = convert_df(queried_df)
st.download_button(
    label="Download data as CSV",
    data=csv,
    file_name=f"predictions_{model_value}.csv",
    mime="text/csv",
)