fix
Browse files- .streamlit/config.toml +2 -0
- app.py +328 -0
- models/ecfp4_mordred_lgbm/cyp3a4_model.json +24 -0
- models/ecfp4_mordred_lgbm/cyp3a4_model.pkl +3 -0
.streamlit/config.toml
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[theme]
|
| 2 |
+
base="light"
|
app.py
ADDED
|
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
from rdkit import Chem
|
| 8 |
+
from streamlit_ketcher import st_ketcher
|
| 9 |
+
from io import StringIO
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
from openadmet_models.models.gradient_boosting.lgbm import LGBMRegressorModel
|
| 13 |
+
from openadmet_models.features.combine import FeatureConcatenator
|
| 14 |
+
from openadmet_models.features.molfeat_properties import DescriptorFeaturizer
|
| 15 |
+
from openadmet_models.features.molfeat_fingerprint import FingerprintFeaturizer
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def _is_valid_smiles(smi):
|
| 20 |
+
if smi is None or smi == "":
|
| 21 |
+
return False
|
| 22 |
+
try:
|
| 23 |
+
m = Chem.MolFromSmiles(smi)
|
| 24 |
+
if m is None:
|
| 25 |
+
return False
|
| 26 |
+
else:
|
| 27 |
+
return True
|
| 28 |
+
except:
|
| 29 |
+
return False
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def sdf_str_to_rdkit_mol(sdf):
|
| 33 |
+
from io import BytesIO
|
| 34 |
+
|
| 35 |
+
bio = BytesIO(sdf.encode())
|
| 36 |
+
suppl = Chem.ForwardSDMolSupplier(bio, removeHs=False)
|
| 37 |
+
mols = [mol for mol in suppl if mol is not None]
|
| 38 |
+
return mols
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
@st.cache_data
|
| 42 |
+
def convert_df(df):
|
| 43 |
+
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
| 44 |
+
return df.to_csv().encode("utf-8")
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def get_model(path, target, model_type):
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
model_path = os.path.join(path, f"{model_type}/{target.lower()}_model.json")
|
| 52 |
+
model_file = os.path.join(path, f"{model_type}/{target.lower()}_model.pkl")
|
| 53 |
+
|
| 54 |
+
print(model_path, model_file)
|
| 55 |
+
|
| 56 |
+
if not os.path.exists(model_path) or not os.path.exists(model_file):
|
| 57 |
+
return None
|
| 58 |
+
|
| 59 |
+
model = LGBMRegressorModel.deserialize(model_path, model_file)
|
| 60 |
+
featurizer = FeatureConcatenator(featurizers=[FingerprintFeaturizer(fp_type="ecfp:4"), DescriptorFeaturizer(descr_type="mordred")])
|
| 61 |
+
return model, featurizer
|
| 62 |
+
|
| 63 |
+
# Set the title of the Streamlit app
|
| 64 |
+
st.title("OpenADMET Streamlit DEMO")
|
| 65 |
+
|
| 66 |
+
# Set the title of the Streamlit app
|
| 67 |
+
st.title("OpenADMET Streamlit DEMO")
|
| 68 |
+
|
| 69 |
+
st.markdown("## Background")
|
| 70 |
+
|
| 71 |
+
st.markdown(
|
| 72 |
+
"**The [OpenADMET](https://openadmet.org) initiative provides a suite of open-source machine learning models to predict ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties, facilitating drug discovery and development.**"
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
st.markdown(
|
| 76 |
+
"This web app enables researchers and scientists to leverage OpenADMET’s models without needing to write or run code, making predictive analytics more accessible."
|
| 77 |
+
)
|
| 78 |
+
st.markdown("---")
|
| 79 |
+
st.markdown("## Input :clipboard:")
|
| 80 |
+
|
| 81 |
+
input = st.selectbox(
|
| 82 |
+
"How would you like to enter your input?",
|
| 83 |
+
["Upload a CSV file", "Draw a molecule", "Enter SMILES", "Upload an SDF file"],
|
| 84 |
+
key="input",
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
multismiles = False
|
| 88 |
+
if input == "Draw a molecule":
|
| 89 |
+
smiles = st_ketcher(None)
|
| 90 |
+
if _is_valid_smiles(smiles):
|
| 91 |
+
st.success("Valid molecule", icon="✅")
|
| 92 |
+
else:
|
| 93 |
+
st.error("Invalid molecule", icon="🚨")
|
| 94 |
+
st.stop()
|
| 95 |
+
smiles = [smiles]
|
| 96 |
+
queried_df = pd.DataFrame(smiles, columns=["SMILES"])
|
| 97 |
+
smiles_column_name = "SMILES"
|
| 98 |
+
smiles_column = queried_df[smiles_column_name]
|
| 99 |
+
elif input == "Enter SMILES":
|
| 100 |
+
smiles = st.text_input("Enter a SMILES string", key="smiles_user_input")
|
| 101 |
+
if _is_valid_smiles(smiles):
|
| 102 |
+
st.success("Valid SMILES string", icon="✅")
|
| 103 |
+
else:
|
| 104 |
+
st.error("Invalid SMILES string", icon="🚨")
|
| 105 |
+
st.stop()
|
| 106 |
+
smiles = [smiles]
|
| 107 |
+
queried_df = pd.DataFrame(smiles, columns=["SMILES"])
|
| 108 |
+
smiles_column_name = "SMILES"
|
| 109 |
+
smiles_column = queried_df[smiles_column_name]
|
| 110 |
+
elif input == "Upload a CSV file":
|
| 111 |
+
# Create a file uploader for CSV files
|
| 112 |
+
uploaded_file = st.file_uploader(
|
| 113 |
+
"Choose a CSV file to upload your predictions to", type="csv", key="csv_file"
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
# If a file is uploaded, parse it into a DataFrame
|
| 117 |
+
if uploaded_file is not None:
|
| 118 |
+
queried_df = pd.read_csv(uploaded_file)
|
| 119 |
+
else:
|
| 120 |
+
st.stop()
|
| 121 |
+
# Select a column from the DataFrame
|
| 122 |
+
smiles_column_name = st.selectbox("Select a SMILES column", queried_df.columns, key="df_smiles_column")
|
| 123 |
+
multismiles = True
|
| 124 |
+
smiles_column = queried_df[smiles_column_name]
|
| 125 |
+
|
| 126 |
+
# check if the smiles are valid
|
| 127 |
+
valid_smiles = [_is_valid_smiles(smi) for smi in smiles_column]
|
| 128 |
+
if not all(valid_smiles):
|
| 129 |
+
st.error(
|
| 130 |
+
"Some of the SMILES strings are invalid, please check the input", icon="🚨"
|
| 131 |
+
)
|
| 132 |
+
st.stop()
|
| 133 |
+
st.success(
|
| 134 |
+
f"All SMILES strings are valid (n={len(valid_smiles)}), proceeding with prediction",
|
| 135 |
+
icon="✅",
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
elif input == "Upload an SDF file":
|
| 139 |
+
# Create a file uploader for SDF files
|
| 140 |
+
uploaded_file = st.file_uploader(
|
| 141 |
+
"Choose a SDF file to upload your predictions to", type="sdf"
|
| 142 |
+
)
|
| 143 |
+
# read with rdkit
|
| 144 |
+
if uploaded_file is not None:
|
| 145 |
+
# To convert to a string based IO:
|
| 146 |
+
try:
|
| 147 |
+
stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
|
| 148 |
+
# To read file as string:
|
| 149 |
+
string_data = stringio.read()
|
| 150 |
+
mols = sdf_str_to_rdkit_mol(string_data)
|
| 151 |
+
smiles = [Chem.MolToSmiles(m) for m in mols]
|
| 152 |
+
queried_df = pd.DataFrame(smiles, columns=["SMILES"])
|
| 153 |
+
except:
|
| 154 |
+
st.error("Error reading the SDF file, please check the input", icon="🚨")
|
| 155 |
+
st.stop()
|
| 156 |
+
else:
|
| 157 |
+
st.error("No file uploaded", icon="🚨")
|
| 158 |
+
st.stop()
|
| 159 |
+
|
| 160 |
+
st.success(
|
| 161 |
+
f"All molecule entries are valid (n={len(queried_df)}), proceeding with prediction",
|
| 162 |
+
icon="✅",
|
| 163 |
+
)
|
| 164 |
+
smiles_column_name = "SMILES"
|
| 165 |
+
smiles_column = queried_df[smiles_column_name]
|
| 166 |
+
multismiles = True
|
| 167 |
+
|
| 168 |
+
st.markdown("## Model parameters :nut_and_bolt:")
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
targets = ['CYP3A4', 'CYP2D6', 'CYP2C9']
|
| 174 |
+
models = {"ecfp:4 Mordred LGBM":"ecfp4_mordred_lgbm", "ChemProp":"chemprop"}
|
| 175 |
+
models_inversed = {v: k for k, v in models.items()}
|
| 176 |
+
|
| 177 |
+
model_names = list(models.keys())
|
| 178 |
+
|
| 179 |
+
endpoints = ["pIC50"]
|
| 180 |
+
|
| 181 |
+
# Select a target value from the preset list
|
| 182 |
+
target_value = st.selectbox("Select a biological target ", targets, key="target")
|
| 183 |
+
# endpoints
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
# Select a target value from the preset list
|
| 187 |
+
endpoint_value = st.selectbox("Select a property ", endpoints, key="endpoint")
|
| 188 |
+
|
| 189 |
+
model_value = st.selectbox("Select a model type ", model_names, key="model")
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
if target_value != "CYP3A4":
|
| 193 |
+
st.write("Only CYP3A4 is currently supported")
|
| 194 |
+
st.stop()
|
| 195 |
+
|
| 196 |
+
if endpoint_value != "pIC50":
|
| 197 |
+
st.write("Only pIC50 is currently supported")
|
| 198 |
+
st.stop()
|
| 199 |
+
|
| 200 |
+
if model_value != "ecfp:4 Mordred LGBM":
|
| 201 |
+
st.write("Only ecfp:4 Mordred LGBM is currently supported")
|
| 202 |
+
st.stop()
|
| 203 |
+
|
| 204 |
+
model, featurizer = get_model("./models", target_value, models[model_value])
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
if model is None:
|
| 210 |
+
st.write(f"No model found for {target_value} {endpoint_value}")
|
| 211 |
+
st.stop()
|
| 212 |
+
# retry with a different target or endpoint
|
| 213 |
+
|
| 214 |
+
st.markdown("## Prediction 🚀")
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
st.write(
|
| 218 |
+
f"Predicting **{target_value} {endpoint_value}** using model:\n\n `{model_value}`"
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
# featurize the smiles
|
| 222 |
+
X, _ = featurizer.featurize(smiles_column)
|
| 223 |
+
# predict the properties
|
| 224 |
+
preds = model.predict(X)
|
| 225 |
+
|
| 226 |
+
# not implemented yet
|
| 227 |
+
err = None
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
pred_column_name = f"{target_value}_computed-{endpoint_value}"
|
| 231 |
+
unc_column_name = f"{target_value}_computed-{endpoint_value}_uncertainty"
|
| 232 |
+
queried_df[pred_column_name] = preds
|
| 233 |
+
queried_df[unc_column_name] = err
|
| 234 |
+
|
| 235 |
+
st.markdown("---")
|
| 236 |
+
if multismiles:
|
| 237 |
+
# plot the predictions and errors
|
| 238 |
+
# Histogram first
|
| 239 |
+
fig, ax = plt.subplots()
|
| 240 |
+
|
| 241 |
+
sorted_df = queried_df.sort_values(by=pred_column_name)
|
| 242 |
+
n_bins = int(len(sorted_df[pred_column_name]) / 10)
|
| 243 |
+
if n_bins < 5: # makes the histogram slightly more interpretable with low data
|
| 244 |
+
n_bins = 5
|
| 245 |
+
|
| 246 |
+
ax.hist(sorted_df[pred_column_name], bins=n_bins)
|
| 247 |
+
|
| 248 |
+
ax.set_ylabel("Count")
|
| 249 |
+
ax.set_xlabel(f"Computed {endpoint_value}")
|
| 250 |
+
ax.set_title(f"Histogram of computed {endpoint_value} for target: {target_value}")
|
| 251 |
+
|
| 252 |
+
st.pyplot(fig)
|
| 253 |
+
|
| 254 |
+
# then a barplot
|
| 255 |
+
fig, ax = plt.subplots()
|
| 256 |
+
|
| 257 |
+
ax.bar(range(len(sorted_df)), sorted_df[pred_column_name])
|
| 258 |
+
|
| 259 |
+
ax.set_xticks([])
|
| 260 |
+
ax.set_xlabel(f"Query compounds")
|
| 261 |
+
ax.set_ylabel(f"Computed {endpoint_value}")
|
| 262 |
+
|
| 263 |
+
ax.set_title(f"Barplot of computed {endpoint_value} for target: {target_value}")
|
| 264 |
+
|
| 265 |
+
st.pyplot(fig)
|
| 266 |
+
|
| 267 |
+
# if endpoint_value == "pIC50":
|
| 268 |
+
# from rdkit.Chem.Descriptors import MolWt
|
| 269 |
+
# import seaborn as sns
|
| 270 |
+
|
| 271 |
+
# # then a scatterplot of uncertainty vs MW
|
| 272 |
+
# queried_df["MW"] = [
|
| 273 |
+
# MolWt(Chem.MolFromSmiles(smi)) for smi in sorted_df[smiles_column_name]
|
| 274 |
+
# ]
|
| 275 |
+
# fig, ax = plt.subplots()
|
| 276 |
+
|
| 277 |
+
# ax = sns.scatterplot(
|
| 278 |
+
# x="MW",
|
| 279 |
+
# y=pred_column_name,
|
| 280 |
+
# hue=unc_column_name,
|
| 281 |
+
# palette="coolwarm",
|
| 282 |
+
# data=queried_df,
|
| 283 |
+
# )
|
| 284 |
+
|
| 285 |
+
# norm = plt.Normalize(
|
| 286 |
+
# queried_df[unc_column_name].min(), queried_df[unc_column_name].max()
|
| 287 |
+
# )
|
| 288 |
+
# sm = plt.cm.ScalarMappable(cmap="coolwarm", norm=norm)
|
| 289 |
+
# sm.set_array([])
|
| 290 |
+
|
| 291 |
+
# # Remove the legend and add a colorbar
|
| 292 |
+
# cbar = ax.figure.colorbar(sm, ax=ax)
|
| 293 |
+
# ax.annotate(
|
| 294 |
+
# f"Computed {endpoint_value} uncertainty",
|
| 295 |
+
# xy=(1.2, 0.3),
|
| 296 |
+
# xycoords="axes fraction",
|
| 297 |
+
# rotation=270,
|
| 298 |
+
# )
|
| 299 |
+
|
| 300 |
+
# ax.set_title(
|
| 301 |
+
# f"Scatterplot of predicted {endpoint_value} versus MW\ntarget: {target_value}"
|
| 302 |
+
# )
|
| 303 |
+
# ax.set_xlabel(f"Molecular weight (Da)")
|
| 304 |
+
# ax.set_ylabel(f"Computed {endpoint_value}")
|
| 305 |
+
# st.pyplot(fig)
|
| 306 |
+
|
| 307 |
+
else:
|
| 308 |
+
# just print the prediction
|
| 309 |
+
preds = queried_df[pred_column_name].values[0]
|
| 310 |
+
smiles = queried_df["SMILES"].values[0]
|
| 311 |
+
if err:
|
| 312 |
+
err = queried_df[unc_column_name].values[0]
|
| 313 |
+
errstr = f"± {err:.2f}"
|
| 314 |
+
else:
|
| 315 |
+
errstr = ""
|
| 316 |
+
|
| 317 |
+
st.markdown(
|
| 318 |
+
f"Predicted {target_value} {endpoint_value} for {smiles} is {preds:.2f} {errstr}."
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
# allow the user to download the predictions
|
| 322 |
+
csv = convert_df(queried_df)
|
| 323 |
+
st.download_button(
|
| 324 |
+
label="Download data as CSV",
|
| 325 |
+
data=csv,
|
| 326 |
+
file_name=f"predictions_{model_value}.csv",
|
| 327 |
+
mime="text/csv",
|
| 328 |
+
)
|
models/ecfp4_mordred_lgbm/cyp3a4_model.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_params": {
|
| 3 |
+
"boosting_type": "gbdt",
|
| 4 |
+
"class_weight": null,
|
| 5 |
+
"colsample_bytree": 1.0,
|
| 6 |
+
"importance_type": "split",
|
| 7 |
+
"learning_rate": 0.05,
|
| 8 |
+
"max_depth": -1,
|
| 9 |
+
"min_child_samples": 20,
|
| 10 |
+
"min_child_weight": 0.001,
|
| 11 |
+
"min_split_gain": 0.0,
|
| 12 |
+
"n_estimators": 500,
|
| 13 |
+
"n_jobs": null,
|
| 14 |
+
"num_leaves": 31,
|
| 15 |
+
"objective": null,
|
| 16 |
+
"random_state": null,
|
| 17 |
+
"reg_alpha": 0.0,
|
| 18 |
+
"reg_lambda": 0.0,
|
| 19 |
+
"subsample": 1.0,
|
| 20 |
+
"subsample_for_bin": 200000,
|
| 21 |
+
"subsample_freq": 0,
|
| 22 |
+
"alpha": 0.005
|
| 23 |
+
}
|
| 24 |
+
}
|
models/ecfp4_mordred_lgbm/cyp3a4_model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b4c4dd3ba5e2deb461c7471ad8c6e957044e81225fe1f55faebe3ee5abc2e3e0
|
| 3 |
+
size 1605595
|