Spaces:
Runtime error
Runtime error
import cv2 | |
import numpy as np | |
import math | |
import torch | |
import random | |
from torch.utils.data import DataLoader | |
from torchvision.transforms import Resize | |
torch.manual_seed(12345) | |
random.seed(12345) | |
np.random.seed(12345) | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
def find_contours(img, color): | |
low = color - 10 | |
high = color + 10 | |
mask = cv2.inRange(img, low, high) | |
contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | |
print(f"Total Contours: {len(contours)}") | |
nonempty_contours = list() | |
for i in range(len(contours)): | |
if hierarchy[0,i,3] == -1 and cv2.contourArea(contours[i]) > cv2.arcLength(contours[i], True): | |
nonempty_contours += [contours[i]] | |
print(f"Nonempty Contours: {len(nonempty_contours)}") | |
contour_plot = img.copy() | |
contour_plot = cv2.drawContours(contour_plot, nonempty_contours, -1, (0,255,0), -1) | |
sorted_contours = sorted(nonempty_contours, key=cv2.contourArea, reverse= True) | |
bounding_rects = [cv2.boundingRect(cnt) for cnt in contours] | |
for (i,c) in enumerate(sorted_contours): | |
M= cv2.moments(c) | |
cx= int(M['m10']/M['m00']) | |
cy= int(M['m01']/M['m00']) | |
cv2.putText(contour_plot, text= str(i), org=(cx,cy), | |
fontFace= cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.25, color=(255,255,255), | |
thickness=1, lineType=cv2.LINE_AA) | |
N = len(sorted_contours) | |
H, W, C = img.shape | |
boxes_array_xywh = [cv2.boundingRect(cnt) for cnt in sorted_contours] | |
boxes_array_corners = [[x, y, x+w, y+h] for x, y, w, h in boxes_array_xywh] | |
boxes = torch.tensor(boxes_array_corners) | |
labels = torch.ones(N) | |
masks = np.zeros([N, H, W]) | |
for idx in range(len(sorted_contours)): | |
cnt = sorted_contours[idx] | |
cv2.drawContours(masks[idx,:,:], [cnt], 0, (255), -1) | |
masks = masks / 255.0 | |
masks = torch.tensor(masks) | |
# for box in boxes: | |
# cv2.rectangle(contour_plot, (box[0].item(), box[1].item()), (box[2].item(), box[3].item()), (255,0,0), 2) | |
return contour_plot, (boxes, masks) | |
def get_dataset_x(blank_image, filter_size=50, filter_stride=2): | |
full_image_tensor = torch.tensor(blank_image).type(torch.FloatTensor).permute(2, 0, 1).unsqueeze(0) | |
num_windows_h = math.floor((full_image_tensor.shape[2] - filter_size) / filter_stride) + 1 | |
num_windows_w = math.floor((full_image_tensor.shape[3] - filter_size) / filter_stride) + 1 | |
windows = torch.nn.functional.unfold(full_image_tensor, (filter_size, filter_size), stride=filter_stride).reshape( | |
[1, 3, 50, 50, num_windows_h * num_windows_w]).permute([0, 4, 1, 2, 3]).squeeze() | |
dataset_images = [windows[idx] for idx in range(len(windows))] | |
dataset = list(dataset_images) | |
return dataset | |
def get_dataset(labeled_image, blank_image, color, filter_size=50, filter_stride=2, label_size=5): | |
contour_plot, (blue_boxes, blue_masks) = find_contours(labeled_image, color) | |
mask = torch.sum(blue_masks, 0) | |
label_dim = int((labeled_image.shape[0] - filter_size) / filter_stride + 1) | |
labels = torch.zeros(label_dim, label_dim) | |
mask_labels = torch.zeros(label_dim, label_dim, filter_size, filter_size) | |
for lx in range(label_dim): | |
for ly in range(label_dim): | |
mask_labels[lx, ly, :, :] = mask[ | |
lx * filter_stride: lx * filter_stride + filter_size, | |
ly * filter_stride: ly * filter_stride + filter_size | |
] | |
print(labels.shape) | |
for box in blue_boxes: | |
x = int((box[0] + box[2]) / 2) | |
y = int((box[1] + box[3]) / 2) | |
window_x = int((x - int(filter_size / 2)) / filter_stride) | |
window_y = int((y - int(filter_size / 2)) / filter_stride) | |
clamp = lambda n, minn, maxn: max(min(maxn, n), minn) | |
labels[ | |
clamp(window_y - label_size, 0, labels.shape[0] - 1):clamp(window_y + label_size, 0, labels.shape[0] - 1), | |
clamp(window_x - label_size, 0, labels.shape[0] - 1):clamp(window_x + label_size, 0, labels.shape[0] - 1), | |
] = 1 | |
positive_labels = labels.flatten() / labels.max() | |
negative_labels = 1 - positive_labels | |
pos_mask_labels = torch.flatten(mask_labels, end_dim=1) | |
neg_mask_labels = 1 - pos_mask_labels | |
mask_labels = torch.stack([pos_mask_labels, neg_mask_labels], dim=1) | |
dataset_labels = torch.tensor(list(zip(positive_labels, negative_labels))) | |
dataset = list(zip( | |
get_dataset_x(blank_image, filter_size=filter_size, filter_stride=filter_stride), | |
dataset_labels, | |
mask_labels | |
)) | |
return dataset, (labels, mask_labels) | |
from torchvision.models.resnet import resnet50 | |
from torchvision.models.resnet import ResNet50_Weights | |
print("Loading resnet...") | |
model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2) | |
hidden_state_size = model.fc.in_features | |
model.fc = torch.nn.Linear(in_features=hidden_state_size, out_features=2, bias=True) | |
model.to(device) | |
model.load_state_dict(torch.load("model_best_epoch_4_59.62.pth", map_location=torch.device(device))) | |
model.to(device) | |
import gradio as gr | |
def count_barnacles(raw_input_img, labeled_input_img, progress=gr.Progress()): | |
progress(0, desc="Finding bounding wire") | |
# crop image | |
h, w = raw_input_img.shape[:2] | |
imghsv = cv2.cvtColor(raw_input_img, cv2.COLOR_RGB2HSV) | |
hsvblur = cv2.GaussianBlur(imghsv, (9, 9), 0) | |
lower = np.array([70, 20, 20]) | |
upper = np.array([130, 255, 255]) | |
color_mask = cv2.inRange(hsvblur, lower, upper) | |
invert = cv2.bitwise_not(color_mask) | |
contours, _ = cv2.findContours(invert, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) | |
max_contour = contours[0] | |
largest_area = 0 | |
for index, contour in enumerate(contours): | |
area = cv2.contourArea(contour) | |
if area > largest_area: | |
if cv2.pointPolygonTest(contour, (w / 2, h / 2), False) == 1: | |
largest_area = area | |
max_contour = contour | |
x, y, w, h = cv2.boundingRect(max_contour) | |
progress(0, desc="Resizing Image") | |
cropped_img = raw_input_img[x:x+w, y:y+h] | |
cropped_image_tensor = torch.transpose(torch.tensor(cropped_img).to(device), 0, 2) | |
resize = Resize((1500, 1500)) | |
input_img = cropped_image_tensor | |
blank_img_copy = torch.transpose(input_img, 0, 2).to("cpu").detach().numpy().copy() | |
progress(0, desc="Generating Windows") | |
test_dataset = get_dataset_x(input_img) | |
test_dataloader = DataLoader(test_dataset, batch_size=1024, shuffle=False) | |
model.eval() | |
predicted_labels_list = [] | |
for data in progress.tqdm(test_dataloader): | |
with torch.no_grad(): | |
data = data.to(device) | |
predicted_labels_list += [model(data)] | |
predicted_labels = torch.cat(predicted_labels_list) | |
x = int(math.sqrt(predicted_labels.shape[0])) | |
predicted_labels = predicted_labels.reshape([x, x, 2]).detach() | |
label_img = predicted_labels[:, :, :1].cpu().numpy() | |
label_img -= label_img.min() | |
label_img /= label_img.max() | |
label_img = (label_img * 255).astype(np.uint8) | |
mask = np.array(label_img > 180, np.uint8) | |
contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)\ | |
gt_contours = find_contours(labeled_input_img[x:x+w, y:y+h], cropped_img, np.array([59, 76, 160])) | |
def extract_contour_center(cnt): | |
M = cv2.moments(cnt) | |
cx = int(M['m10'] / M['m00']) | |
cy = int(M['m01'] / M['m00']) | |
return cx, cy | |
filter_width = 50 | |
filter_stride = 2 | |
def rev_window_transform(point): | |
wx, wy = point | |
x = int(filter_width / 2) + wx * filter_stride | |
y = int(filter_width / 2) + wy * filter_stride | |
return x, y | |
nonempty_contours = filter(lambda cnt: cv2.contourArea(cnt) != 0, contours) | |
windows = map(extract_contour_center, nonempty_contours) | |
points = list(map(rev_window_transform, windows)) | |
for x, y in points: | |
blank_img_copy = cv2.circle(blank_img_copy, (x, y), radius=4, color=(255, 0, 0), thickness=-1) | |
print(f"pointlist: {len(points)}") | |
return blank_img_copy, len(points) | |
demo = gr.Interface(count_barnacles, | |
inputs=[ | |
gr.Image(shape=(500, 500), type="numpy", label="Input Image"), | |
gr.Image(shape=(500, 500), type="numpy", label="Masked Input Image") | |
], | |
outputs=[ | |
gr.Image(shape=(500, 500), type="numpy", label="Annotated Image"), | |
gr.Number(label="Predicted Number of Barnacles"), | |
gr.Number(label="Actual Number of Barnacles"), | |
gr.Number(label="Custom Metric") | |
]) | |
# examples="examples") | |
demo.queue(concurrency_count=10).launch() | |