File size: 8,933 Bytes
5afcf8b
 
 
 
 
 
 
62aee00
5afcf8b
 
 
 
 
62aee00
fc1a0c8
75541cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5afcf8b
75541cb
fc1a0c8
 
 
 
5afcf8b
 
 
 
 
fc1a0c8
75541cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5afcf8b
 
fc1a0c8
5afcf8b
 
 
 
62aee00
 
 
5afcf8b
 
 
 
75541cb
62aee00
 
 
 
 
d300f4f
62aee00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315bd25
3440d36
55068d3
62aee00
 
5afcf8b
fc1a0c8
5afcf8b
 
 
 
62aee00
5afcf8b
 
 
 
a61a980
5afcf8b
 
 
 
75541cb
 
 
 
 
fc1a0c8
5afcf8b
 
fc1a0c8
 
5afcf8b
 
 
 
 
 
 
fc1a0c8
 
5afcf8b
 
 
 
8fb39d0
5afcf8b
fc1a0c8
8fb39d0
 
fc1a0c8
5afcf8b
75541cb
 
 
 
 
 
 
 
 
 
 
a96a3c9
fc1a0c8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import cv2
import numpy as np
import math
import torch
import random

from torch.utils.data import DataLoader
from torchvision.transforms import Resize

torch.manual_seed(12345)
random.seed(12345)
np.random.seed(12345)

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

def find_contours(img, color):
    low = color - 10
    high = color + 10

    mask = cv2.inRange(img, low, high)
    contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    print(f"Total Contours: {len(contours)}")
    nonempty_contours = list()
    for i in range(len(contours)):
        if hierarchy[0,i,3] == -1 and cv2.contourArea(contours[i]) > cv2.arcLength(contours[i], True):
            nonempty_contours += [contours[i]]
    print(f"Nonempty Contours: {len(nonempty_contours)}")
    contour_plot = img.copy()
    contour_plot = cv2.drawContours(contour_plot, nonempty_contours, -1, (0,255,0), -1)

    sorted_contours = sorted(nonempty_contours, key=cv2.contourArea, reverse= True)

    bounding_rects = [cv2.boundingRect(cnt) for cnt in contours]

    for (i,c) in enumerate(sorted_contours):
        M= cv2.moments(c)
        cx= int(M['m10']/M['m00'])
        cy= int(M['m01']/M['m00'])
        cv2.putText(contour_plot, text= str(i), org=(cx,cy),
                fontFace= cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.25, color=(255,255,255),
                thickness=1, lineType=cv2.LINE_AA)

    N = len(sorted_contours)
    H, W, C = img.shape
    boxes_array_xywh = [cv2.boundingRect(cnt) for cnt in sorted_contours]
    boxes_array_corners = [[x, y, x+w, y+h] for x, y, w, h in boxes_array_xywh]
    boxes = torch.tensor(boxes_array_corners)

    labels = torch.ones(N)
    masks = np.zeros([N, H, W])
    for idx in range(len(sorted_contours)):
        cnt = sorted_contours[idx]
        cv2.drawContours(masks[idx,:,:], [cnt], 0, (255), -1)
    masks = masks / 255.0
    masks = torch.tensor(masks)

    # for box in boxes:
    #     cv2.rectangle(contour_plot, (box[0].item(), box[1].item()), (box[2].item(), box[3].item()), (255,0,0), 2)

    return contour_plot, (boxes, masks)


def get_dataset_x(blank_image, filter_size=50, filter_stride=2):
    full_image_tensor = torch.tensor(blank_image).type(torch.FloatTensor).permute(2, 0, 1).unsqueeze(0)
    num_windows_h = math.floor((full_image_tensor.shape[2] - filter_size) / filter_stride) + 1
    num_windows_w = math.floor((full_image_tensor.shape[3] - filter_size) / filter_stride) + 1
    windows = torch.nn.functional.unfold(full_image_tensor, (filter_size, filter_size), stride=filter_stride).reshape(
        [1, 3, 50, 50, num_windows_h * num_windows_w]).permute([0, 4, 1, 2, 3]).squeeze()

    dataset_images = [windows[idx] for idx in range(len(windows))]
    dataset = list(dataset_images)
    return dataset


def get_dataset(labeled_image, blank_image, color, filter_size=50, filter_stride=2, label_size=5):
    contour_plot, (blue_boxes, blue_masks) = find_contours(labeled_image, color)

    mask = torch.sum(blue_masks, 0)

    label_dim = int((labeled_image.shape[0] - filter_size) / filter_stride + 1)
    labels = torch.zeros(label_dim, label_dim)
    mask_labels = torch.zeros(label_dim, label_dim, filter_size, filter_size)

    for lx in range(label_dim):
        for ly in range(label_dim):
            mask_labels[lx, ly, :, :] = mask[
                                        lx * filter_stride: lx * filter_stride + filter_size,
                                        ly * filter_stride: ly * filter_stride + filter_size
                                        ]

    print(labels.shape)
    for box in blue_boxes:
        x = int((box[0] + box[2]) / 2)
        y = int((box[1] + box[3]) / 2)

        window_x = int((x - int(filter_size / 2)) / filter_stride)
        window_y = int((y - int(filter_size / 2)) / filter_stride)

        clamp = lambda n, minn, maxn: max(min(maxn, n), minn)

        labels[
        clamp(window_y - label_size, 0, labels.shape[0] - 1):clamp(window_y + label_size, 0, labels.shape[0] - 1),
        clamp(window_x - label_size, 0, labels.shape[0] - 1):clamp(window_x + label_size, 0, labels.shape[0] - 1),
        ] = 1

    positive_labels = labels.flatten() / labels.max()
    negative_labels = 1 - positive_labels
    pos_mask_labels = torch.flatten(mask_labels, end_dim=1)
    neg_mask_labels = 1 - pos_mask_labels
    mask_labels = torch.stack([pos_mask_labels, neg_mask_labels], dim=1)
    dataset_labels = torch.tensor(list(zip(positive_labels, negative_labels)))
    dataset = list(zip(
        get_dataset_x(blank_image, filter_size=filter_size, filter_stride=filter_stride),
        dataset_labels,
        mask_labels
    ))
    return dataset, (labels, mask_labels)


from torchvision.models.resnet import resnet50
from torchvision.models.resnet import ResNet50_Weights

print("Loading resnet...")
model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)
hidden_state_size = model.fc.in_features
model.fc = torch.nn.Linear(in_features=hidden_state_size, out_features=2, bias=True)
model.to(device)
model.load_state_dict(torch.load("model_best_epoch_4_59.62.pth", map_location=torch.device(device)))
model.to(device)

import gradio as gr


def count_barnacles(raw_input_img, labeled_input_img, progress=gr.Progress()):
    progress(0, desc="Finding bounding wire")

    # crop image
    h, w = raw_input_img.shape[:2]
    imghsv = cv2.cvtColor(raw_input_img, cv2.COLOR_RGB2HSV)
    hsvblur = cv2.GaussianBlur(imghsv, (9, 9), 0)

    lower = np.array([70, 20, 20])
    upper = np.array([130, 255, 255])

    color_mask = cv2.inRange(hsvblur, lower, upper)

    invert = cv2.bitwise_not(color_mask)

    contours, _ = cv2.findContours(invert, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

    max_contour = contours[0]
    largest_area = 0
    for index, contour in enumerate(contours):
        area = cv2.contourArea(contour)
        if area > largest_area:
            if cv2.pointPolygonTest(contour, (w / 2, h / 2), False) == 1:
                largest_area = area
                max_contour = contour

    x, y, w, h = cv2.boundingRect(max_contour)

    progress(0, desc="Resizing Image")
    cropped_img = raw_input_img[x:x+w, y:y+h]
    cropped_image_tensor = torch.transpose(torch.tensor(cropped_img).to(device), 0, 2)
    resize = Resize((1500, 1500))
    input_img = cropped_image_tensor
    blank_img_copy = torch.transpose(input_img, 0, 2).to("cpu").detach().numpy().copy()

    progress(0, desc="Generating Windows")
    test_dataset = get_dataset_x(input_img)
    test_dataloader = DataLoader(test_dataset, batch_size=1024, shuffle=False)
    model.eval()
    predicted_labels_list = []
    for data in progress.tqdm(test_dataloader):
        with torch.no_grad():
            data = data.to(device)
            predicted_labels_list += [model(data)]
    predicted_labels = torch.cat(predicted_labels_list)
    x = int(math.sqrt(predicted_labels.shape[0]))
    predicted_labels = predicted_labels.reshape([x, x, 2]).detach()
    label_img = predicted_labels[:, :, :1].cpu().numpy()
    label_img -= label_img.min()
    label_img /= label_img.max()
    label_img = (label_img * 255).astype(np.uint8)
    mask = np.array(label_img > 180, np.uint8)
    contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)\

    gt_contours = find_contours(labeled_input_img[x:x+w, y:y+h], cropped_img, np.array([59, 76, 160]))



    def extract_contour_center(cnt):
        M = cv2.moments(cnt)
        cx = int(M['m10'] / M['m00'])
        cy = int(M['m01'] / M['m00'])
        return cx, cy

    filter_width = 50
    filter_stride = 2

    def rev_window_transform(point):
        wx, wy = point
        x = int(filter_width / 2) + wx * filter_stride
        y = int(filter_width / 2) + wy * filter_stride
        return x, y

    nonempty_contours = filter(lambda cnt: cv2.contourArea(cnt) != 0, contours)
    windows = map(extract_contour_center, nonempty_contours)
    points = list(map(rev_window_transform, windows))
    for x, y in points:
        blank_img_copy = cv2.circle(blank_img_copy, (x, y), radius=4, color=(255, 0, 0), thickness=-1)
    print(f"pointlist: {len(points)}")
    return blank_img_copy, len(points)


demo = gr.Interface(count_barnacles,
                    inputs=[
                        gr.Image(shape=(500, 500), type="numpy", label="Input Image"),
                        gr.Image(shape=(500, 500), type="numpy", label="Masked Input Image")
                    ],
                    outputs=[
                        gr.Image(shape=(500, 500), type="numpy", label="Annotated Image"),
                        gr.Number(label="Predicted Number of Barnacles"),
                        gr.Number(label="Actual Number of Barnacles"),
                        gr.Number(label="Custom Metric")
                    ])
                    # examples="examples")
demo.queue(concurrency_count=10).launch()