Henry Scheible commited on
Commit
5afcf8b
·
1 Parent(s): 4d96dbc
Files changed (2) hide show
  1. app.py +76 -0
  2. requirements.txt +5 -0
app.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import math
4
+ import torch
5
+ import random
6
+
7
+ from torch.utils.data import DataLoader
8
+
9
+ torch.manual_seed(12345)
10
+ random.seed(12345)
11
+ np.random.seed(12345)
12
+
13
+ def get_dataset_x(blank_image, filter_size=50, filter_stride=2):
14
+ full_image_tensor = torch.tensor(blank_image).type(torch.FloatTensor).permute(2,0,1).unsqueeze(0)
15
+ num_windows_h = math.floor((full_image_tensor.shape[2] - filter_size)/filter_stride) + 1
16
+ num_windows_w = math.floor((full_image_tensor.shape[3] - filter_size)/filter_stride) + 1
17
+ windows = torch.nn.functional.unfold(full_image_tensor, (filter_size, filter_size), stride=filter_stride).reshape([1, 3, 50, 50, num_windows_h * num_windows_w]).permute([0,4,1,2,3]).squeeze()
18
+
19
+ dataset_images = [windows[idx] for idx in range(len(windows))]
20
+ dataset = list(dataset_images)
21
+ return dataset
22
+
23
+ from torchvision.models.resnet import resnet50
24
+ from torchvision.models.resnet import ResNet50_Weights
25
+ print("Loading resnet...")
26
+ model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)
27
+ hidden_state_size = model.fc.in_features
28
+ model.fc = torch.nn.Linear(in_features=hidden_state_size, out_features=2, bias=True)
29
+
30
+ import gradio as gr
31
+
32
+
33
+ def count_barnacles(input_img, progress=gr.Progress()):
34
+ progress(0, desc="Loading Image")
35
+ test_dataset = get_dataset_x(input_img)
36
+ test_dataloader = DataLoader(test_dataset, batch_size=256, shuffle=False)
37
+ model.eval()
38
+ predicted_labels_list = []
39
+ for data in progress.tqdm(test_dataloader):
40
+ with torch.no_grad():
41
+ predicted_labels_list += [model(data)]
42
+ predicted_labels = torch.cat(predicted_labels_list)
43
+ x = int(math.sqrt(predicted_labels.shape[0]))
44
+ predicted_labels = predicted_labels.reshape([x, x, 2]).detach()
45
+ label_img = predicted_labels[:,:,:1].cpu().numpy()
46
+ label_img -= label_img.min()
47
+ label_img /= label_img.max()
48
+ label_img = (label_img * 255).astype(np.uint8)
49
+ mask = np.array(label_img > 180, np.uint8)
50
+ contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
51
+ def extract_contour_center(cnt):
52
+ M = cv2.moments(cnt)
53
+ cx = int(M['m10']/M['m00'])
54
+ cy = int(M['m01']/M['m00'])
55
+ return cx, cy
56
+
57
+ filter_width = 50
58
+ filter_stride = 2
59
+
60
+ def rev_window_transform(point):
61
+ wx, wy = point
62
+ x = int(filter_width/2) + wx*filter_stride
63
+ y = int(filter_width/2) + wy*filter_stride
64
+ return x, y
65
+
66
+ nonempty_contours = filter(lambda cnt: cv2.contourArea(cnt) != 0, contours)
67
+ windows = map(extract_contour_center, nonempty_contours)
68
+ points = map(rev_window_transform, windows)
69
+
70
+ blank_img_copy = input_img.copy()
71
+ for x, y in points:
72
+ blank_img_copy = cv2.circle(blank_img_copy, (x,y), radius=4, color=(255, 0, 0), thickness=-1)
73
+ return blank_img_copy
74
+
75
+ demo = gr.Interface(count_barnacles, gr.Image(shape=(500, 500), type="numpy"), gr.Image(type="numpy"))
76
+ demo.queue(concurrency_count=10).launch()
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ opencv-python
2
+ numpy
3
+ torch
4
+ torchvision
5
+ gradio