hasanain9's picture
test3
2707bf9 verified
raw
history blame
6.6 kB
import os
import gradio as gr
import requests
import pandas as pd
from openai import OpenAI
# Constants
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# ToolEnhancedAgent menggunakan OpenAI API terbaru (1.x)
class ToolEnhancedAgent:
def __init__(self):
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
raise ValueError("OPENAI_API_KEY not found in environment variables.")
self.client = OpenAI(api_key=api_key)
print("ToolEnhancedAgent initialized with OpenAI GPT model.")
def use_tool(self, tool_name: str, input_text: str) -> str:
# Contoh penggunaan tool sederhana: kalkulator, tanggal, Wikipedia
try:
if tool_name == "calculator":
# Aman eval dengan math
import math
return str(eval(input_text, {"__builtins__": None, "math": math}))
elif tool_name == "date":
import datetime
return str(datetime.datetime.now().date())
elif tool_name == "wikipedia":
return self.search_wikipedia(input_text)
else:
return "[Tool Error: Unknown tool]"
except Exception as e:
return f"[Tool Error: {e}]"
def search_wikipedia(self, query: str) -> str:
try:
res = requests.get(f"https://en.wikipedia.org/api/rest_v1/page/summary/{query}")
if res.status_code == 200:
return res.json().get("extract", "No summary found.")
return f"No Wikipedia summary for {query}."
except Exception as e:
return f"Wikipedia Error: {e}"
def __call__(self, question: str) -> str:
# Prompt dengan Chain of Thought dan instruksi penggunaan tools
prompt = (
"You are an AI assistant that can think step-by-step and use tools when needed.\n"
f"Question: {question}\n"
"Answer with your reasoning steps. If needed, mention the tool you want to use like [calculator], [date], [wikipedia]."
)
try:
response = self.client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are a helpful assistant using tools and reasoning."},
{"role": "user", "content": prompt}
],
temperature=0.3,
max_tokens=700,
)
answer = response.choices[0].message.content.strip()
# Simple tool simulation: jika ada tag [tool:toolname] di jawaban, gunakan tool dan tambahkan hasilnya
# Contoh: "[calculator] 2+2" -> hitung 4 dan tambahkan ke jawaban
import re
pattern = r"\[([a-z]+)\](.*)"
match = re.search(pattern, answer, re.IGNORECASE)
if match:
tool_name = match.group(1).lower()
tool_input = match.group(2).strip()
tool_result = self.use_tool(tool_name, tool_input)
answer += f"\n\n[Tool used: {tool_name}]\nResult: {tool_result}"
return answer
except Exception as e:
print(f"Agent error: {e}")
return f"[Agent Error: {e}]"
# Revisi run_and_submit_all untuk menerima profile (LoginButton output)
def run_and_submit_all(profile: gr.OAuthProfile | None):
if profile is None:
return "Please login with your Hugging Face account.", None
username = profile.username
space_id = os.getenv("SPACE_ID") or "your-username/your-space" # Ganti sesuai space kamu jika perlu
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = ToolEnhancedAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code_url = f"https://huggingface.co/spaces/{space_id}/tree/main"
# Ambil pertanyaan
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
except Exception as e:
return f"Error fetching questions: {e}", None
answers_payload = []
results_log = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": answer,
})
except Exception as e:
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"Agent Error: {e}",
})
if not answers_payload:
return "Agent did not produce answers to submit.", pd.DataFrame(results_log)
submission_data = {
"username": username.strip(),
"agent_code": agent_code_url,
"answers": answers_payload,
}
try:
submit_response = requests.post(submit_url, json=submission_data, timeout=60)
submit_response.raise_for_status()
result = submit_response.json()
status = (
f"Submission Successful!\n"
f"User: {result.get('username')}\n"
f"Score: {result.get('score', 'N/A')}% "
f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')} correct)\n"
f"Message: {result.get('message', 'No message')}"
)
return status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission failed: {e}", pd.DataFrame(results_log)
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# GAIA Benchmark Agent Runner")
gr.Markdown("""
1. Login with your Hugging Face account.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, and submit answers.
""")
login_btn = gr.LoginButton()
run_btn = gr.Button("Run Evaluation & Submit All Answers")
status_out = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_df = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_btn.click(
fn=run_and_submit_all,
inputs=[login_btn],
outputs=[status_out, results_df]
)
if __name__ == "__main__":
demo.launch(debug=True, share=False)