Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from openai import OpenAI | |
# Constants | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# ToolEnhancedAgent menggunakan OpenAI API terbaru (1.x) | |
class ToolEnhancedAgent: | |
def __init__(self): | |
api_key = os.getenv("OPENAI_API_KEY") | |
if not api_key: | |
raise ValueError("OPENAI_API_KEY not found in environment variables.") | |
self.client = OpenAI(api_key=api_key) | |
print("ToolEnhancedAgent initialized with OpenAI GPT model.") | |
def use_tool(self, tool_name: str, input_text: str) -> str: | |
# Contoh penggunaan tool sederhana: kalkulator, tanggal, Wikipedia | |
try: | |
if tool_name == "calculator": | |
# Aman eval dengan math | |
import math | |
return str(eval(input_text, {"__builtins__": None, "math": math})) | |
elif tool_name == "date": | |
import datetime | |
return str(datetime.datetime.now().date()) | |
elif tool_name == "wikipedia": | |
return self.search_wikipedia(input_text) | |
else: | |
return "[Tool Error: Unknown tool]" | |
except Exception as e: | |
return f"[Tool Error: {e}]" | |
def search_wikipedia(self, query: str) -> str: | |
try: | |
res = requests.get(f"https://en.wikipedia.org/api/rest_v1/page/summary/{query}") | |
if res.status_code == 200: | |
return res.json().get("extract", "No summary found.") | |
return f"No Wikipedia summary for {query}." | |
except Exception as e: | |
return f"Wikipedia Error: {e}" | |
def __call__(self, question: str) -> str: | |
# Prompt dengan Chain of Thought dan instruksi penggunaan tools | |
prompt = ( | |
"You are an AI assistant that can think step-by-step and use tools when needed.\n" | |
f"Question: {question}\n" | |
"Answer with your reasoning steps. If needed, mention the tool you want to use like [calculator], [date], [wikipedia]." | |
) | |
try: | |
response = self.client.chat.completions.create( | |
model="gpt-4o-mini", | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant using tools and reasoning."}, | |
{"role": "user", "content": prompt} | |
], | |
temperature=0.3, | |
max_tokens=700, | |
) | |
answer = response.choices[0].message.content.strip() | |
# Simple tool simulation: jika ada tag [tool:toolname] di jawaban, gunakan tool dan tambahkan hasilnya | |
# Contoh: "[calculator] 2+2" -> hitung 4 dan tambahkan ke jawaban | |
import re | |
pattern = r"\[([a-z]+)\](.*)" | |
match = re.search(pattern, answer, re.IGNORECASE) | |
if match: | |
tool_name = match.group(1).lower() | |
tool_input = match.group(2).strip() | |
tool_result = self.use_tool(tool_name, tool_input) | |
answer += f"\n\n[Tool used: {tool_name}]\nResult: {tool_result}" | |
return answer | |
except Exception as e: | |
print(f"Agent error: {e}") | |
return f"[Agent Error: {e}]" | |
# Revisi run_and_submit_all untuk menerima profile (LoginButton output) | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
if profile is None: | |
return "Please login with your Hugging Face account.", None | |
username = profile.username | |
space_id = os.getenv("SPACE_ID") or "your-username/your-space" # Ganti sesuai space kamu jika perlu | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
try: | |
agent = ToolEnhancedAgent() | |
except Exception as e: | |
return f"Error initializing agent: {e}", None | |
agent_code_url = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
# Ambil pertanyaan | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
except Exception as e: | |
return f"Error fetching questions: {e}", None | |
answers_payload = [] | |
results_log = [] | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
continue | |
try: | |
answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": answer}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": answer, | |
}) | |
except Exception as e: | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": f"Agent Error: {e}", | |
}) | |
if not answers_payload: | |
return "Agent did not produce answers to submit.", pd.DataFrame(results_log) | |
submission_data = { | |
"username": username.strip(), | |
"agent_code": agent_code_url, | |
"answers": answers_payload, | |
} | |
try: | |
submit_response = requests.post(submit_url, json=submission_data, timeout=60) | |
submit_response.raise_for_status() | |
result = submit_response.json() | |
status = ( | |
f"Submission Successful!\n" | |
f"User: {result.get('username')}\n" | |
f"Score: {result.get('score', 'N/A')}% " | |
f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')} correct)\n" | |
f"Message: {result.get('message', 'No message')}" | |
) | |
return status, pd.DataFrame(results_log) | |
except Exception as e: | |
return f"Submission failed: {e}", pd.DataFrame(results_log) | |
# Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("# GAIA Benchmark Agent Runner") | |
gr.Markdown(""" | |
1. Login with your Hugging Face account. | |
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, and submit answers. | |
""") | |
login_btn = gr.LoginButton() | |
run_btn = gr.Button("Run Evaluation & Submit All Answers") | |
status_out = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
results_df = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_btn.click( | |
fn=run_and_submit_all, | |
inputs=[login_btn], | |
outputs=[status_out, results_df] | |
) | |
if __name__ == "__main__": | |
demo.launch(debug=True, share=False) | |