Spaces:
Sleeping
Sleeping
test3
Browse files
app.py
CHANGED
@@ -1,145 +1,175 @@
|
|
1 |
import os
|
|
|
2 |
import requests
|
3 |
-
import datetime
|
4 |
import pandas as pd
|
5 |
-
import gradio as gr
|
6 |
from openai import OpenAI
|
7 |
|
|
|
|
|
|
|
|
|
8 |
class ToolEnhancedAgent:
|
9 |
def __init__(self):
|
10 |
api_key = os.getenv("OPENAI_API_KEY")
|
11 |
if not api_key:
|
12 |
-
raise ValueError("OPENAI_API_KEY
|
13 |
self.client = OpenAI(api_key=api_key)
|
14 |
-
print("ToolEnhancedAgent initialized with GPT
|
15 |
|
16 |
def use_tool(self, tool_name: str, input_text: str) -> str:
|
|
|
17 |
try:
|
18 |
if tool_name == "calculator":
|
19 |
-
|
|
|
|
|
20 |
elif tool_name == "date":
|
|
|
21 |
return str(datetime.datetime.now().date())
|
22 |
elif tool_name == "wikipedia":
|
23 |
return self.search_wikipedia(input_text)
|
24 |
else:
|
25 |
-
return "[Tool Error: Unknown
|
26 |
except Exception as e:
|
27 |
return f"[Tool Error: {e}]"
|
28 |
|
29 |
-
def search_wikipedia(self, query):
|
30 |
try:
|
31 |
res = requests.get(f"https://en.wikipedia.org/api/rest_v1/page/summary/{query}")
|
32 |
if res.status_code == 200:
|
33 |
return res.json().get("extract", "No summary found.")
|
34 |
-
|
35 |
-
return f"No Wikipedia summary for {query}."
|
36 |
except Exception as e:
|
37 |
-
return f"
|
38 |
|
39 |
def __call__(self, question: str) -> str:
|
|
|
40 |
prompt = (
|
41 |
-
"You are
|
42 |
-
"Think step-by-step before answering. Respond clearly.\n\n"
|
43 |
f"Question: {question}\n"
|
44 |
-
"Answer
|
45 |
)
|
46 |
|
47 |
try:
|
48 |
response = self.client.chat.completions.create(
|
49 |
model="gpt-4o-mini",
|
50 |
messages=[
|
51 |
-
{"role": "system", "content": "You are a
|
52 |
{"role": "user", "content": prompt}
|
53 |
],
|
54 |
temperature=0.3,
|
55 |
max_tokens=700,
|
56 |
)
|
57 |
answer = response.choices[0].message.content.strip()
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
return answer
|
60 |
except Exception as e:
|
61 |
-
print(f"
|
62 |
return f"[Agent Error: {e}]"
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
67 |
|
68 |
username = profile.username
|
69 |
-
|
|
|
|
|
70 |
questions_url = f"{api_url}/questions"
|
71 |
submit_url = f"{api_url}/submit"
|
72 |
|
73 |
-
# Instantiate agent
|
74 |
try:
|
75 |
agent = ToolEnhancedAgent()
|
76 |
except Exception as e:
|
77 |
-
return f"
|
|
|
|
|
78 |
|
79 |
-
#
|
80 |
try:
|
81 |
response = requests.get(questions_url, timeout=15)
|
82 |
response.raise_for_status()
|
83 |
-
|
84 |
-
if not questions:
|
85 |
-
return "No questions fetched.", None
|
86 |
except Exception as e:
|
87 |
return f"Error fetching questions: {e}", None
|
88 |
|
89 |
answers_payload = []
|
90 |
results_log = []
|
91 |
|
92 |
-
for
|
93 |
-
task_id =
|
94 |
-
|
95 |
-
if not task_id or
|
96 |
continue
|
97 |
try:
|
98 |
-
answer = agent(
|
99 |
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
|
100 |
-
results_log.append({
|
|
|
|
|
|
|
|
|
101 |
except Exception as e:
|
102 |
-
results_log.append({
|
|
|
|
|
|
|
|
|
103 |
|
104 |
if not answers_payload:
|
105 |
-
return "
|
106 |
|
107 |
submission_data = {
|
108 |
-
"username": username,
|
109 |
-
"agent_code":
|
110 |
"answers": answers_payload,
|
111 |
}
|
112 |
|
113 |
try:
|
114 |
-
|
115 |
-
|
116 |
-
result =
|
|
|
117 |
status = (
|
118 |
f"Submission Successful!\n"
|
119 |
f"User: {result.get('username')}\n"
|
120 |
-
f"Score: {result.get('score', 'N/A')}
|
121 |
-
f"
|
122 |
-
f"Message: {result.get('message', '')}"
|
123 |
)
|
124 |
-
|
125 |
-
return status, results_df
|
126 |
except Exception as e:
|
127 |
-
|
128 |
-
return f"Submission failed: {e}", results_df
|
129 |
|
|
|
130 |
with gr.Blocks() as demo:
|
131 |
-
gr.Markdown("#
|
|
|
|
|
|
|
|
|
|
|
132 |
login_btn = gr.LoginButton()
|
133 |
run_btn = gr.Button("Run Evaluation & Submit All Answers")
|
134 |
|
135 |
-
|
136 |
-
|
137 |
|
138 |
run_btn.click(
|
139 |
fn=run_and_submit_all,
|
140 |
inputs=[login_btn],
|
141 |
-
outputs=[
|
142 |
)
|
143 |
|
144 |
if __name__ == "__main__":
|
145 |
-
demo.launch()
|
|
|
1 |
import os
|
2 |
+
import gradio as gr
|
3 |
import requests
|
|
|
4 |
import pandas as pd
|
|
|
5 |
from openai import OpenAI
|
6 |
|
7 |
+
# Constants
|
8 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
9 |
+
|
10 |
+
# ToolEnhancedAgent menggunakan OpenAI API terbaru (1.x)
|
11 |
class ToolEnhancedAgent:
|
12 |
def __init__(self):
|
13 |
api_key = os.getenv("OPENAI_API_KEY")
|
14 |
if not api_key:
|
15 |
+
raise ValueError("OPENAI_API_KEY not found in environment variables.")
|
16 |
self.client = OpenAI(api_key=api_key)
|
17 |
+
print("ToolEnhancedAgent initialized with OpenAI GPT model.")
|
18 |
|
19 |
def use_tool(self, tool_name: str, input_text: str) -> str:
|
20 |
+
# Contoh penggunaan tool sederhana: kalkulator, tanggal, Wikipedia
|
21 |
try:
|
22 |
if tool_name == "calculator":
|
23 |
+
# Aman eval dengan math
|
24 |
+
import math
|
25 |
+
return str(eval(input_text, {"__builtins__": None, "math": math}))
|
26 |
elif tool_name == "date":
|
27 |
+
import datetime
|
28 |
return str(datetime.datetime.now().date())
|
29 |
elif tool_name == "wikipedia":
|
30 |
return self.search_wikipedia(input_text)
|
31 |
else:
|
32 |
+
return "[Tool Error: Unknown tool]"
|
33 |
except Exception as e:
|
34 |
return f"[Tool Error: {e}]"
|
35 |
|
36 |
+
def search_wikipedia(self, query: str) -> str:
|
37 |
try:
|
38 |
res = requests.get(f"https://en.wikipedia.org/api/rest_v1/page/summary/{query}")
|
39 |
if res.status_code == 200:
|
40 |
return res.json().get("extract", "No summary found.")
|
41 |
+
return f"No Wikipedia summary for {query}."
|
|
|
42 |
except Exception as e:
|
43 |
+
return f"Wikipedia Error: {e}"
|
44 |
|
45 |
def __call__(self, question: str) -> str:
|
46 |
+
# Prompt dengan Chain of Thought dan instruksi penggunaan tools
|
47 |
prompt = (
|
48 |
+
"You are an AI assistant that can think step-by-step and use tools when needed.\n"
|
|
|
49 |
f"Question: {question}\n"
|
50 |
+
"Answer with your reasoning steps. If needed, mention the tool you want to use like [calculator], [date], [wikipedia]."
|
51 |
)
|
52 |
|
53 |
try:
|
54 |
response = self.client.chat.completions.create(
|
55 |
model="gpt-4o-mini",
|
56 |
messages=[
|
57 |
+
{"role": "system", "content": "You are a helpful assistant using tools and reasoning."},
|
58 |
{"role": "user", "content": prompt}
|
59 |
],
|
60 |
temperature=0.3,
|
61 |
max_tokens=700,
|
62 |
)
|
63 |
answer = response.choices[0].message.content.strip()
|
64 |
+
# Simple tool simulation: jika ada tag [tool:toolname] di jawaban, gunakan tool dan tambahkan hasilnya
|
65 |
+
# Contoh: "[calculator] 2+2" -> hitung 4 dan tambahkan ke jawaban
|
66 |
+
import re
|
67 |
+
pattern = r"\[([a-z]+)\](.*)"
|
68 |
+
match = re.search(pattern, answer, re.IGNORECASE)
|
69 |
+
if match:
|
70 |
+
tool_name = match.group(1).lower()
|
71 |
+
tool_input = match.group(2).strip()
|
72 |
+
tool_result = self.use_tool(tool_name, tool_input)
|
73 |
+
answer += f"\n\n[Tool used: {tool_name}]\nResult: {tool_result}"
|
74 |
return answer
|
75 |
except Exception as e:
|
76 |
+
print(f"Agent error: {e}")
|
77 |
return f"[Agent Error: {e}]"
|
78 |
|
79 |
+
# Revisi run_and_submit_all untuk menerima profile (LoginButton output)
|
80 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
81 |
+
if profile is None:
|
82 |
+
return "Please login with your Hugging Face account.", None
|
83 |
|
84 |
username = profile.username
|
85 |
+
space_id = os.getenv("SPACE_ID") or "your-username/your-space" # Ganti sesuai space kamu jika perlu
|
86 |
+
|
87 |
+
api_url = DEFAULT_API_URL
|
88 |
questions_url = f"{api_url}/questions"
|
89 |
submit_url = f"{api_url}/submit"
|
90 |
|
|
|
91 |
try:
|
92 |
agent = ToolEnhancedAgent()
|
93 |
except Exception as e:
|
94 |
+
return f"Error initializing agent: {e}", None
|
95 |
+
|
96 |
+
agent_code_url = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
97 |
|
98 |
+
# Ambil pertanyaan
|
99 |
try:
|
100 |
response = requests.get(questions_url, timeout=15)
|
101 |
response.raise_for_status()
|
102 |
+
questions_data = response.json()
|
|
|
|
|
103 |
except Exception as e:
|
104 |
return f"Error fetching questions: {e}", None
|
105 |
|
106 |
answers_payload = []
|
107 |
results_log = []
|
108 |
|
109 |
+
for item in questions_data:
|
110 |
+
task_id = item.get("task_id")
|
111 |
+
question_text = item.get("question")
|
112 |
+
if not task_id or question_text is None:
|
113 |
continue
|
114 |
try:
|
115 |
+
answer = agent(question_text)
|
116 |
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
|
117 |
+
results_log.append({
|
118 |
+
"Task ID": task_id,
|
119 |
+
"Question": question_text,
|
120 |
+
"Submitted Answer": answer,
|
121 |
+
})
|
122 |
except Exception as e:
|
123 |
+
results_log.append({
|
124 |
+
"Task ID": task_id,
|
125 |
+
"Question": question_text,
|
126 |
+
"Submitted Answer": f"Agent Error: {e}",
|
127 |
+
})
|
128 |
|
129 |
if not answers_payload:
|
130 |
+
return "Agent did not produce answers to submit.", pd.DataFrame(results_log)
|
131 |
|
132 |
submission_data = {
|
133 |
+
"username": username.strip(),
|
134 |
+
"agent_code": agent_code_url,
|
135 |
"answers": answers_payload,
|
136 |
}
|
137 |
|
138 |
try:
|
139 |
+
submit_response = requests.post(submit_url, json=submission_data, timeout=60)
|
140 |
+
submit_response.raise_for_status()
|
141 |
+
result = submit_response.json()
|
142 |
+
|
143 |
status = (
|
144 |
f"Submission Successful!\n"
|
145 |
f"User: {result.get('username')}\n"
|
146 |
+
f"Score: {result.get('score', 'N/A')}% "
|
147 |
+
f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')} correct)\n"
|
148 |
+
f"Message: {result.get('message', 'No message')}"
|
149 |
)
|
150 |
+
return status, pd.DataFrame(results_log)
|
|
|
151 |
except Exception as e:
|
152 |
+
return f"Submission failed: {e}", pd.DataFrame(results_log)
|
|
|
153 |
|
154 |
+
# Gradio UI
|
155 |
with gr.Blocks() as demo:
|
156 |
+
gr.Markdown("# GAIA Benchmark Agent Runner")
|
157 |
+
gr.Markdown("""
|
158 |
+
1. Login with your Hugging Face account.
|
159 |
+
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, and submit answers.
|
160 |
+
""")
|
161 |
+
|
162 |
login_btn = gr.LoginButton()
|
163 |
run_btn = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
|
165 |
+
status_out = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
166 |
+
results_df = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
167 |
|
168 |
run_btn.click(
|
169 |
fn=run_and_submit_all,
|
170 |
inputs=[login_btn],
|
171 |
+
outputs=[status_out, results_df]
|
172 |
)
|
173 |
|
174 |
if __name__ == "__main__":
|
175 |
+
demo.launch(debug=True, share=False)
|